Citation:
HONG Biao, GUO Xin-Yue, ZHANG Ying, ZHANG Jia, WU Zheng-Yan. Study on Catalase-Mimicking Activity of Prussian Blue Analogue Nanozyme for Rapid Detection of Glyphosate[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 874-883.
doi:
10.19756/j.issn.0253-3820.221629
-
Chromium-doped Prussian blue nanozyme (CrPBzyme) was prepared at room temperature with citric acid as stabilizer. Under weakly alkaline condition, CrPBzyme could catalyze the decomposition of H2O2 to O2, displaying appreciable catalase (CAT)-mimicking activity. The CAT-mimicking activity of CrPBzyme had differentiated changes after mixing with different transition metal ions, among which Cu2+ ion greatly enhanced the CAT-mimicking activity, causing the more rapid decomposition of H2O2 and dramatic increase of dissolved oxygen (DO) level. When glyphosate was added in the CrPBzyme/Cu2+ mixture, the CAT-mimicking activity of the mixture decreased owing to the strong interaction of glyphosate and Cu2+ ion, resulting in the decelerated decomposition of H2O2 and downward shift of DO level. On the basis of the CAT-mimicking activity of CrPBzyme and the activity modulation mediated by Cu2+, a novel sensor for rapid and quantitative determination of glyphosate was developed by using DO level as output signal, achieving a detection range of 1.0-16.7 μmol/L and a limit of detection of 1.0 μmol/L (3σ). The recoveries of glyphosate in real samples (water and soil) were 89.8%-99.2%, suggesting the practical potential of this method for detection of glyphosate.
-
Keywords:
- Prussian blue,
- Nanozyme,
- Catalase mimetic,
- Dissolved oxygen,
- Glyphosate
-
-
-
[1]
SIMONETTI E, CARTAUD G, QUINN R M, MAROTTI I, DINELLI G. J. AOAC Int., 2015, 98(6):1760-1768.
-
[2]
QIAO C, WANG C, PANG R, TIAN F, HAN L, GUO L, LUO J, LI J, PANG T, XIE H, FANG J. Ecotoxicol. Environ. Saf., 2020, 206:111209.
-
[3]
DUKE S O, POWLES S B. Pest. Manag. Sci., 2008, 64(4):319-325.
-
[4]
GILL J P K, SETHI N, MOHAN A. Environ. Chem. Lett, 2017, 15(1):85-100.
-
[5]
WILLIAMS G M, AARDEMA M, ACQUAVELLA J, BERRY S C, BRUSICK D, BURNS M M, DE CAMARGO J L V, GARABRANT D, GREIM H A, KIER L D, KIRKLAND D J, MARSH G, SOLOMON K R, SORAHAN T, ROBERTS A, WEED D L. Crit. Rev. Toxicol., 2016, 46(sup1):3-20.
-
[6]
-
[7]
PAREJA L, JESÚS F, HEINZEN H, HERNANDO M D, RAJSKI Ł, FERNÁNDEZ-ALBA A R. Anal. Methods, 2019, 11(16):2123-2128.
-
[8]
CONNOLLY A, KOSLITZ S, BURY D, BRÜNING T, CONRAD A, KOLOSSA-GEHRING M, COGGINS M A, KOCH H M. J. Chromatogr. B, 2020, 1158:122348.
-
[9]
WANG D, LIN B, CAO Y, GUO M, YU Y. J. Agric. Food Chem., 2016, 64(30):6042-6050.
-
[10]
CHERGUI S, RHILI K, ABREGO-MARTINEZ J C, JIMÉNEZ G C, SIAJ M. ACS Agric. Sci. Technol., 2021, 1(6):655-663.
-
[11]
WANG X, SAKINATI M, YANG Y, MA Y, YANG M, LUO H, HOU C, HUO D. Anal. Methods, 2020, 12(4):520-527.
-
[12]
YAN X, SONG Y, ZHU C, LI H, DU D, SU X, LIN Y. Anal. Chem., 2018, 90(4):2618-2624.
-
[13]
-
[14]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[15]
HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.
-
[16]
ZHANG R, YAN X, FAN K. Acc. Mater. Res., 2021, 2(7):534-547.
-
[17]
-
[18]
LUO D, HUANG X, LIU B, ZOU W, WU Y. J. Agric. Food Chem., 2021, 69(11):3537-3547.
-
[19]
TAI S, QIAN Z, REN H, BARIMAH A O, PENG C, WEI X. Anal. Chim. Acta, 2022, 1222:339992.
-
[20]
ZHANG W, HU S, YIN J J, HE W, LU W, MA M, GU N, ZHANG Y. J. Am. Chem. Soc., 2016, 138(18):5860-5865.
-
[21]
-
[22]
SHOKOUHIMEHR M, SOEHNLEN E S, KHITRIN A, BASU S, HUANG S D. Inorg. Chem. Commun., 2010, 13(1):58-61.
-
[23]
ZHU W, LIU K, SUN X, WANG X, LI Y, CHENG L, LIU Z. ACS Appl. Mater. Interfaces, 2015, 7(21):11575-11582.
-
[24]
ZHANG J, YIN H, WANG H, XU L, SAMUEL B, LIU F, CHEN H. Environ. Sci. Pollut. Res., 2018, 25(17):16913-16921.
-
[25]
UOGINTĖ I, LUJANIENĖ G, MAŽEIKA K. J. Hazard. Mater., 2019, 369:226-235.
-
[26]
VÁZQUEZ-GONZÁLEZ M, TORRENTE-RODRÍGUEZ R M, KOZELL A, LIAO W C, CECCONELLO A, CAMPUZANO S, PINGARRÓN J M, WILLNER I. Nano Lett., 2017, 17(8):4958-4963.
-
[27]
HUANG B, LIU Y, LU Z, SHEN M, ZHOU J, REN J, LI X, LIAO S. ACS Sustainable Chem. Eng., 2019, 7(19):16659-16667.
-
[28]
SHOU P, YU Z, WU Y, FENG Q, ZHOU B, XING J, LIU C, TU J, AKAKURU O U, YE Z, ZHANG X, LU Z, ZHANG L, WU A. Adv. Healthcare Mater., 2020, 9(1):1900948.
-
[29]
KANDANAPITIYE M S, WANG F J, VALLEY B, GUNATHILAKE C, JARONIEC M, HUANG S D. Inorg. Chem., 2015, 54(4):1212-1214.
-
[30]
SIMONOV A, DE BAERDEMAEKER T, BOSTRÖM H L B, RÍOS GÓMEZ M L, GRAY H J, CHERNYSHOV D, BOSAK A, BÜRGI H B, GOODWIN A L. Nature, 2020, 578(7794):256-260.
-
[31]
SUN F, YANG L, LI S, WANG Y, WANG L, LI P, YE F, FU Y. J. Agric. Food Chem., 2021, 69(43):12661-12673.
-
[32]
-
[33]
YANG Y, GHALANDARI B, LIN L, SANG X, SU W, DIVSALAR A, DING X. Food Chem., 2022, 367:130617.
-
[34]
WANG L, BI Y, GAO J, LI Y, DING H, DING L. RSC Adv., 2016, 6(89):85820-85828.
-
[1]
-
-
-
[1]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[2]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[3]
Jie WEI , Qing ZHOU , Dandan DING , Xiang JING , Fei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435
-
[4]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[5]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[6]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[7]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[9]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[10]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[11]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[13]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[14]
Kangjuan Cheng , Chunxiao Liu , Youpeng Wang , Qiu Jiang , Tingting Zheng , Xu Li , Chuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112
-
[15]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[16]
Fan Fan , Hao Xiu , Yuting Wang , Yongpeng Cui , Yajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143
-
[17]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[18]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[19]
Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(3297)
- HTML views(119)
Login In
DownLoad: