Citation:
MA Xiao, ZHAO Dan, WU Pei-Cheng, LIN Ji-Hong, WANG Fang, XU Yan-Jie, HE Long-Long, LIU Xin-Yu, SUN Jian. Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(6): 922-933.
doi:
10.19756/j.issn.0253-3820.221625
-
Nanozymes, as a class of nanomaterials with enzyme-like activity, exhibit good development and application potential in the fields of analytical chemistry and disease diagnosis and treatment. Metal-organic frameworks (MOFs) materials are porous crystalline materials formed by metal nodes and organic ligands, and their structures have certain similarities with natural enzymes. At present, researchers have developed a variety of nanozymes based on MOFs, including nanozymes with peroxidase-like, oxidase-like, superoxide dismutase-like, and hydrolase-like activities, showing broad application prospects. In this paper, according to the structural characteristics of the materials, MOFs-based nanozymes were divided into four categories, including original MOFs, chemically modified MOFs, MOFs composite materials and MOFs derivatives, and the basic principles and latest developments in the preparation of these nanozymes were introduced. Based on analytical strategies such as colorimetric sensing, fluorescent sensing and electrochemical sensing, the application progress of MOFs-based nanozymes in bioanalysis was reviewed. The challenges of their practical applications and future development trends were also discussed.
-
-
-
[1]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[2]
WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.
-
[3]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[4]
COLONNA S, GAGGERO N, RICHELMI C, PASTA P. Trends Biotechnol., 1999, 17(4):163-168.
-
[5]
LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.
-
[6]
AI L, LI L, ZHANG C, FU J, JIANG J. Chem. Eur. J., 2013, 19(45):15105-15108.
-
[7]
ZHANG J W, ZHANG H T, DU Z Y, WANG X, YU S H, JIANG H L. Chem. Commun., 2014, 50(9):1092-1094.
-
[8]
CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.
-
[9]
WANG Y, XUE Y, ZHAO Q, WANG S, SUN J, YANG X. Anal. Chem., 2022, 94(47):16345-16352.
-
[10]
WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.
-
[11]
CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.
-
[12]
DALAPATI R, SAKTHIVEL B, GHOSALYA M K, DHAKSHINAMOORTHY A, BISWAS S. CrystEngComm, 2017, 19(39):5915-5925.
-
[13]
LIU Y, ZHOU M, CAO W, WANG X, WANG Q, LI S, WEI H. Anal. Chem., 2019, 91(13):8170-8175.
-
[14]
ZHANG L, ZHANG Y, WANG Z, CAO F, SANG Y, DONG K, PU F, REN J, QU X. Mater. Horiz., 2019, 6(8):1682-1687.
-
[15]
MONDLOCH J E, KATZ M J, ISLEY III W C, GHOSH P, LIAO P, BURY W, WAGNER G W, HALL M G, DECOSTE J B, PETERSON G W, SNURR R Q, CRAMER C J, HUPP J T, FARHA O K. Nat. Mater., 2015, 14(5):512-516.
-
[16]
LIU X, QI W, WANG Y F, SU R X, HE Z M. Eur. J. Inorg. Chem., 2018, 2018(41):4579-4585.
-
[17]
NIU X, LI X, LYU Z, PAN J, DING S, RUAN X, ZHU W, DU D, LIN Y. Chem. Commun., 2020, 56(77):11338-11353.
-
[18]
VALEKAR A H, BATULE B S, KIM M I, CHO K H, HONG D Y, LEE U H, CHANG J S, PARK H G, HWANG Y K. Biosens. Bioelectron., 2018, 100:161-168.
-
[19]
HU S S, YAN J J, HUANG X M, GUO L H, LIN Z Y, LUO F, QIU B, WONNG K Y, CHEN G N. Sens. Actuators, B, 2018, 267:312-319.
-
[20]
LIU T, TIAN J, CUI L, LIU Q, WU L, ZHANG X. Colloids Surf. B, 2019, 178:137-145.
-
[21]
LIU Y, ZHANG L, LI Q, DAI H, XIANG T, YANG G, LI L. Anal. Chim. Acta, 2021, 1146:24-32.
-
[22]
SONG C, DING W, LIU H, ZHAO W, YAO Y, YAO C. New J. Chem., 2019, 43(32):12776-12784.
-
[23]
LIU Q, ZHANG A, WANG R, ZHANG Q, CUI D. Nano-Micro Lett., 2021, 13(1):154.
-
[24]
CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.
-
[25]
LI Y, HE X, YIN J J, MA Y, ZHANG P, LI J, DING Y, ZHANG J, ZHAO Y, CHAI Z, ZHANG Z. Angew. Chem. Int. Ed., 2015, 127(6):1852-1855.
-
[26]
TAN B, ZHAO H, WU W, LIU X, ZHANG Y, QUAN X. Nanoscale, 2017, 9(47):18699-18710.
-
[27]
XU J, PENG J, WANG X, HOU X. ACS Sustain. Chem. Eng., 2022, 10(29):9315-9324.
-
[28]
DÍAZ A, LOEWEN P C, FITA I, CARPENA X. Arch. Biochem. Biophys., 2012, 525(2):102-110.
-
[29]
YIN Y, GAO C, XIAO Q, LIN G, LIN Z, CAI Z, YANG H. ACS Appl. Mater. Interfaces, 2016, 8(42):29052-29061.
-
[30]
LI D, WU S, WANG F, JIA S, LIU Y, HAN X, ZHANG L, ZHANG S, WU Y. Mater. Lett., 2016, 178:48-51.
-
[31]
ZHANG L Y, FAN C, LIU M, LIU F J, BIAN S S, DU S Y, ZHU S Y, WANG H. Sens. Actuators, B, 2018, 266:543-552.
-
[32]
WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 129(50):16298-16301.
-
[33]
ZHONG X, XIA H, HUANG W, LI Z, JIANG Y. Chem. Eng. J., 2020, 381:122758.
-
[34]
TAN H, MA C, GAO L, LI Q, SONG Y, XU F, WANG T, WANG L. Chem. Eur. J., 2014, 20(49):16377-16383.
-
[35]
SONG Y, CHO D, VENKATESWARLU S, YOON M. RSC Adv., 2017, 7(17):10592-10600.
-
[36]
DONG W F, ZHUANG Y X, LI S Q, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 255:2050-2057.
-
[37]
ZHAO J, DONG W F, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 263:575-584.
-
[38]
TANG M L, LI J Q, CAI X D, SUN T D, CHEN C X. Chem. Asian J., 2022, 17(7):e202101422.
-
[39]
HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.
-
[40]
ZHAO C, XIONG C, LIU X, QIAO M, LI Z, YUAN T, WANG J, QU Y, WANG X Q, ZHOU F, XU Q, WANG S, CHEN M, WANG W, LI Y, YAO T, WU Y, LI Y. Chem. Commun., 2019, 55(16):2285-2288.
-
[41]
LIANG L, HUANG Y, LIU W, ZUO W, YE F, ZHAO S. Front. Chem., 2020, 8:671.
-
[42]
ZHENG H Q, LIU C Y, ZENG X Y, CHEN J, LÜ J, LIN R G, CAO R, LIN Z J, SU J W. Inorg. Chem., 2018, 57(15):9096- 9104.
-
[43]
WANG Y, ZHU Y, BINYAM A, LIU M, WU Y, LI F. Biosens. Bioelectron., 2016, 86:432-438.
-
[44]
LI H, LIU H, ZHANG J, CHENG Y, ZHANG C, FEI X, XIAN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40716-40725.
-
[45]
CUI F, DENG Q, SUN L. RSC Adv., 2015, 5(119):98215-98221.
-
[46]
WU T, MA Z, LI P, LIU M, LIU X, LI H, ZHANG Y, YAO S. Talanta, 2019, 202:354-361.
-
[47]
-
[48]
ZHAO C, JIANG Z, MU R, LI Y. Talanta, 2016, 159:365-370.
-
[49]
LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.
-
[50]
HU S, ZHU L, LAM C W, GUO L, LIN Z, QIU B, WONG K Y, CHEN G, LIU Z. Microchim. Acta, 2019, 186(3):190.
-
[51]
LI Y, YU C, YANG B, LIU Z, XIA P, WANG Q. Biosens. Bioelectron., 2018, 102:307-315.
-
[52]
LU J, HU Y H, WANG P X, LIU P Q, CHEN Z G, SUN D P. Sens. Actuators, B, 2020, 311:127909.
-
[53]
ARIF D, HUSSAIN Z, SOHAIL M, LIAQAT M A, KHAN M A, NOOR T. Front. Chem., 2020, 8:573510.
-
[54]
WANG Z, ZHANG Y C, WANG X Z, HAN L. Biosens. Bioelectron., 2022, 206:114120.
-
[1]
-
-
-
[1]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[2]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[3]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[4]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[5]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[6]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[7]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[8]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[9]
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
-
[10]
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
-
[11]
Xiaogang YANG , Xinya ZHANG , Jing LI , Huilin WANG , Min LI , Xiaotian WEI , Xinci WU , Lufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167
-
[12]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[13]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[14]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[15]
Wenjuan SHI , Yuke LU , Xiuyuan LI , Lei HOU , Yaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220
-
[16]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002
-
[17]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[18]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[19]
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
-
[20]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[1]
Metrics
- PDF Downloads(72)
- Abstract views(6066)
- HTML views(575)
Login In
DownLoad: