Citation: MA Xiao,  ZHAO Dan,  WU Pei-Cheng,  LIN Ji-Hong,  WANG Fang,  XU Yan-Jie,  HE Long-Long,  LIU Xin-Yu,  SUN Jian. Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 922-933. doi: 10.19756/j.issn.0253-3820.221625 shu

Metal-Organic Framework-based Nanozymes and Their Applications in Bioanalysis

  • Corresponding author: ZHAO Dan,  SUN Jian, 
  • Received Date: 18 December 2022
    Revised Date: 15 February 2023

    Fund Project: Supported by the Henan Provincial Science and Technology Plan Project-Science and Technology Research Project (No. 212102210122), the National Natural Science Foundation of China (Nos. 22104046), the Henan Provincial Department of Education Key Project (Nos. 23A150056, 23A530007) and the Luoyang Institute of Science and Technology High-level Talents Startup Project (No. 2019BZ18).

  • Nanozymes, as a class of nanomaterials with enzyme-like activity, exhibit good development and application potential in the fields of analytical chemistry and disease diagnosis and treatment. Metal-organic frameworks (MOFs) materials are porous crystalline materials formed by metal nodes and organic ligands, and their structures have certain similarities with natural enzymes. At present, researchers have developed a variety of nanozymes based on MOFs, including nanozymes with peroxidase-like, oxidase-like, superoxide dismutase-like, and hydrolase-like activities, showing broad application prospects. In this paper, according to the structural characteristics of the materials, MOFs-based nanozymes were divided into four categories, including original MOFs, chemically modified MOFs, MOFs composite materials and MOFs derivatives, and the basic principles and latest developments in the preparation of these nanozymes were introduced. Based on analytical strategies such as colorimetric sensing, fluorescent sensing and electrochemical sensing, the application progress of MOFs-based nanozymes in bioanalysis was reviewed. The challenges of their practical applications and future development trends were also discussed.
  • 加载中
    1. [1]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    2. [2]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    3. [3]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    4. [4]

      COLONNA S, GAGGERO N, RICHELMI C, PASTA P. Trends Biotechnol., 1999, 17(4):163-168.

    5. [5]

      LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.

    6. [6]

      AI L, LI L, ZHANG C, FU J, JIANG J. Chem. Eur. J., 2013, 19(45):15105-15108.

    7. [7]

      ZHANG J W, ZHANG H T, DU Z Y, WANG X, YU S H, JIANG H L. Chem. Commun., 2014, 50(9):1092-1094.

    8. [8]

      CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.

    9. [9]

      WANG Y, XUE Y, ZHAO Q, WANG S, SUN J, YANG X. Anal. Chem., 2022, 94(47):16345-16352.

    10. [10]

      WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.

    11. [11]

      CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.

    12. [12]

      DALAPATI R, SAKTHIVEL B, GHOSALYA M K, DHAKSHINAMOORTHY A, BISWAS S. CrystEngComm, 2017, 19(39):5915-5925.

    13. [13]

      LIU Y, ZHOU M, CAO W, WANG X, WANG Q, LI S, WEI H. Anal. Chem., 2019, 91(13):8170-8175.

    14. [14]

      ZHANG L, ZHANG Y, WANG Z, CAO F, SANG Y, DONG K, PU F, REN J, QU X. Mater. Horiz., 2019, 6(8):1682-1687.

    15. [15]

      MONDLOCH J E, KATZ M J, ISLEY III W C, GHOSH P, LIAO P, BURY W, WAGNER G W, HALL M G, DECOSTE J B, PETERSON G W, SNURR R Q, CRAMER C J, HUPP J T, FARHA O K. Nat. Mater., 2015, 14(5):512-516.

    16. [16]

      LIU X, QI W, WANG Y F, SU R X, HE Z M. Eur. J. Inorg. Chem., 2018, 2018(41):4579-4585.

    17. [17]

      NIU X, LI X, LYU Z, PAN J, DING S, RUAN X, ZHU W, DU D, LIN Y. Chem. Commun., 2020, 56(77):11338-11353.

    18. [18]

      VALEKAR A H, BATULE B S, KIM M I, CHO K H, HONG D Y, LEE U H, CHANG J S, PARK H G, HWANG Y K. Biosens. Bioelectron., 2018, 100:161-168.

    19. [19]

      HU S S, YAN J J, HUANG X M, GUO L H, LIN Z Y, LUO F, QIU B, WONNG K Y, CHEN G N. Sens. Actuators, B, 2018, 267:312-319.

    20. [20]

      LIU T, TIAN J, CUI L, LIU Q, WU L, ZHANG X. Colloids Surf. B, 2019, 178:137-145.

    21. [21]

      LIU Y, ZHANG L, LI Q, DAI H, XIANG T, YANG G, LI L. Anal. Chim. Acta, 2021, 1146:24-32.

    22. [22]

      SONG C, DING W, LIU H, ZHAO W, YAO Y, YAO C. New J. Chem., 2019, 43(32):12776-12784.

    23. [23]

      LIU Q, ZHANG A, WANG R, ZHANG Q, CUI D. Nano-Micro Lett., 2021, 13(1):154.

    24. [24]

      CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.

    25. [25]

      LI Y, HE X, YIN J J, MA Y, ZHANG P, LI J, DING Y, ZHANG J, ZHAO Y, CHAI Z, ZHANG Z. Angew. Chem. Int. Ed., 2015, 127(6):1852-1855.

    26. [26]

      TAN B, ZHAO H, WU W, LIU X, ZHANG Y, QUAN X. Nanoscale, 2017, 9(47):18699-18710.

    27. [27]

      XU J, PENG J, WANG X, HOU X. ACS Sustain. Chem. Eng., 2022, 10(29):9315-9324.

    28. [28]

      DÍAZ A, LOEWEN P C, FITA I, CARPENA X. Arch. Biochem. Biophys., 2012, 525(2):102-110.

    29. [29]

      YIN Y, GAO C, XIAO Q, LIN G, LIN Z, CAI Z, YANG H. ACS Appl. Mater. Interfaces, 2016, 8(42):29052-29061.

    30. [30]

      LI D, WU S, WANG F, JIA S, LIU Y, HAN X, ZHANG L, ZHANG S, WU Y. Mater. Lett., 2016, 178:48-51.

    31. [31]

      ZHANG L Y, FAN C, LIU M, LIU F J, BIAN S S, DU S Y, ZHU S Y, WANG H. Sens. Actuators, B, 2018, 266:543-552.

    32. [32]

      WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 129(50):16298-16301.

    33. [33]

      ZHONG X, XIA H, HUANG W, LI Z, JIANG Y. Chem. Eng. J., 2020, 381:122758.

    34. [34]

      TAN H, MA C, GAO L, LI Q, SONG Y, XU F, WANG T, WANG L. Chem. Eur. J., 2014, 20(49):16377-16383.

    35. [35]

      SONG Y, CHO D, VENKATESWARLU S, YOON M. RSC Adv., 2017, 7(17):10592-10600.

    36. [36]

      DONG W F, ZHUANG Y X, LI S Q, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 255:2050-2057.

    37. [37]

      ZHAO J, DONG W F, ZHANG X D, CHAI H X, HUANG Y M. Sens. Actuators, B, 2018, 263:575-584.

    38. [38]

      TANG M L, LI J Q, CAI X D, SUN T D, CHEN C X. Chem. Asian J., 2022, 17(7):e202101422.

    39. [39]

      HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.

    40. [40]

      ZHAO C, XIONG C, LIU X, QIAO M, LI Z, YUAN T, WANG J, QU Y, WANG X Q, ZHOU F, XU Q, WANG S, CHEN M, WANG W, LI Y, YAO T, WU Y, LI Y. Chem. Commun., 2019, 55(16):2285-2288.

    41. [41]

      LIANG L, HUANG Y, LIU W, ZUO W, YE F, ZHAO S. Front. Chem., 2020, 8:671.

    42. [42]

      ZHENG H Q, LIU C Y, ZENG X Y, CHEN J, LÜ J, LIN R G, CAO R, LIN Z J, SU J W. Inorg. Chem., 2018, 57(15):9096- 9104.

    43. [43]

      WANG Y, ZHU Y, BINYAM A, LIU M, WU Y, LI F. Biosens. Bioelectron., 2016, 86:432-438.

    44. [44]

      LI H, LIU H, ZHANG J, CHENG Y, ZHANG C, FEI X, XIAN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40716-40725.

    45. [45]

      CUI F, DENG Q, SUN L. RSC Adv., 2015, 5(119):98215-98221.

    46. [46]

      WU T, MA Z, LI P, LIU M, LIU X, LI H, ZHANG Y, YAO S. Talanta, 2019, 202:354-361.

    47. [47]

    48. [48]

      ZHAO C, JIANG Z, MU R, LI Y. Talanta, 2016, 159:365-370.

    49. [49]

      LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.

    50. [50]

      HU S, ZHU L, LAM C W, GUO L, LIN Z, QIU B, WONG K Y, CHEN G, LIU Z. Microchim. Acta, 2019, 186(3):190.

    51. [51]

      LI Y, YU C, YANG B, LIU Z, XIA P, WANG Q. Biosens. Bioelectron., 2018, 102:307-315.

    52. [52]

      LU J, HU Y H, WANG P X, LIU P Q, CHEN Z G, SUN D P. Sens. Actuators, B, 2020, 311:127909.

    53. [53]

      ARIF D, HUSSAIN Z, SOHAIL M, LIAQAT M A, KHAN M A, NOOR T. Front. Chem., 2020, 8:573510.

    54. [54]

      WANG Z, ZHANG Y C, WANG X Z, HAN L. Biosens. Bioelectron., 2022, 206:114120.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    8. [8]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    9. [9]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    10. [10]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    11. [11]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    14. [14]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    15. [15]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    16. [16]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(72)
  • Abstract views(6067)
  • HTML views(575)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return