Citation: XIA Zi-Wei,  JIN Yu-Qin,  ZHENG Jing,  ZHANG Min,  YIN Xue-Bo. Preparation of ZIF-90 Manganese Dioxide Nanosheet Composite and Its Application for Glutathione Detection[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 892-900. doi: 10.19756/j.issn.0253-3820.221624 shu

Preparation of ZIF-90 Manganese Dioxide Nanosheet Composite and Its Application for Glutathione Detection

  • Corresponding author: YIN Xue-Bo, xbyin@nankai.edu.cn
  • Received Date: 18 December 2022
    Revised Date: 6 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22174077)

  • ZIF-90-MnO2 nanosheet composite was prepared by growing MnO2 nanosheets on ZIF-90 at 55 °C with dissolved oxygen. ZIF-90 provided nucleation sites and support for the growth of MnO2 nanosheets and thus improved the dispersion and oxidase activity of MnO2 nanosheets. A colorimetric sensor based on the oxidase-like activity of ZIF-90-MnO2 was constructed to detect glutathione (GSH) colorimetrically. Under the optimized experimental conditions, the detection limit of GSH was 0.30 μmol/L (3σ), the linear range was 1.25—30 μmol/L, and the whole detection was completed within 15 min. Coexisting substances in the serum samples did not interfere with the detection. The strategy of preparing ZIF-90-MnO2 nanosheet composite under mild conditions was expected to extend the application of MnO2 as an oxidase-like enzyme.
  • 加载中
    1. [1]

    2. [2]

      XIA Y, XIA L, LIU Y, YANG T, DENG J, DAI H. J. Environ. Sci., 2018, 64:276-288.

    3. [3]

      GUPTA G, SELVAKUMAR K, LAKSHMINARASIMHAN N, SENTHIL KUMAR S M, MAMLOUK M. J. Power Sources, 2020, 461:228131.

    4. [4]

      LIN M, CHEN Z. Chemosphere, 2020, 250:126329.

    5. [5]

      MIAO L, WANG J, ZHANG P. Appl. Surf. Sci., 2019, 466:441-453.

    6. [6]

      GUO Y, GUO H, WANG Y, LIU L, CHEN W. RSC Adv., 2014, 4(27):14048-14054.

    7. [7]

      WANG L, MA W, LI Y, CUI H. J. Sol-Gel Sci. Technol., 2016, 82(1):85-91.

    8. [8]

    9. [9]

      XIA A, YU W, YI J, TAN G, REN H, LIU C. J. Electroanal. Chem., 2019, 839:25-31.

    10. [10]

      SUZUKI K, KATO T, FUCHIDA S, TOKORO C. Chem. Geol., 2020, 550:119744.

    11. [11]

      LI X, CAI M, SHEN Z, ZHANG M, TANG Z, LUO S H, LU N. J. Mater. Chem. B, 2022, 10(33):6328-6337.

    12. [12]

      CHEN L, ZHANG M, YANG X, LI W, ZHENG J, GAN W, XU J. J. Alloys Compd., 2017, 695:3339-3347.

    13. [13]

      YUAN H, DENG L, CHEN Y, YUAN Y. Electrochim. Acta, 2016, 196:280-285.

    14. [14]

      NIU Q, ZHENG J, LIU L, XU J, ALSULAMI H, AMIN KUTBI M, ZHANG M. New J. Chem., 2020, 44(28):11959-11964.

    15. [15]

      HE W, GUO X, ZHENG J, XU J, HAYAT T, ALHARBI N S, ZHANG M. Inorg. Chem., 2019, 58(11):7255-7266.

    16. [16]

      CHENG Y, WEN C, SUN Y Q, YU H, YIN X B. Adv. Funct. Mater., 2021, 31(37):2104378.

    17. [17]

      TOWNSEND D M, TEW K D, TAPIERO H. Biomed. Pharmacother., 2003, 57(3-4):145-155.

    18. [18]

      HATEM E, EL BANNA N, HUANG M E. Antioxid. Redox Signal., 2017, 27(15):1217-1234.

    19. [19]

      HE D, YANG X, HE X, WANG K, YANG X, HE X, ZOU Z. Chem. Commun., 2015, 51(79):14764-14767.

    20. [20]

      NI P, SUN Y, DAI H, HU J, JIANG S, WANG Y, LI Z. Biosens. Bioelectron., 2015, 63:47-52.

    21. [21]

      MANDAL P K, TRIPATHI M, SUGUNAN S. Biochem. Biophys. Res. Commun., 2012, 417(1):43-48.

    22. [22]

      WAWEGAMA N K, BROWNING G F, KANCI A, MARENDA M S, MARKHAM P F. Clin. Vaccine Immunol., 2014, 21(2):196-202.

    23. [23]

      GAO W, LIU Z, QI L, LAI J, KITTE S A, XU G. Anal. Chem., 2016, 88(15):7654-7659.

    24. [24]

      DENG R, XIE X, VENDRELL M, CHANG Y T, LIU X. J. Am. Chem. Soc., 2011, 133(50):20168-20171.

    25. [25]

      LIU X, WANG Q, ZHAO H, ZHANG L, SU Y, LV Y. Analyst, 2012, 137(19):4552-4558.

    26. [26]

      YAN X, SONG Y, WU X, ZHU C, SU X, DU D, LIN Y. Nanoscale, 2017, 9(6):2317-2323.

    27. [27]

      WAN Y, QI P, ZHANG D, WU J, WANG Y. Biosens. Bioelectron., 2012, 33(1):69-74.

    28. [28]

      XIA Z W, ZHENG J, ZHANG M, YIN X B. ChemistrySelect, 2022, 7(48):e202203934.

    29. [29]

      LIU W, XIANG W, GUAN N, CUI R, CHENG H, CHEN X, SONG Z, ZHANG X, ZHANG Y. Sep. Purif. Technol., 2022, 278:119590.

    30. [30]

      DAVOGLIO R A, CABELLO G, MARCO J F, BIAGGIO S R. Electrochim. Acta, 2018, 261:428-435.

    31. [31]

      JIA J, ZHANG P, CHEN L. Appl. Catal., B, 2016, 189:210-218.

    32. [32]

      XU D, LI B, DOU X, FENG L, ZHANG L, LIU Y. Sci. Total Environ., 2022, 812:1525544.

    33. [33]

      MO S, ZHANG Q, LI J, SUN Y, REN Q, ZOU S, ZHANG Q, LU J, FU M, MO D, WU J, HUANG H, YE D. Appl. Catal., B, 2020, 264:118464.

    34. [34]

      LIU J, MENG L, FEI Z, DYSON P J, JING X, LIU X. Biosens. Bioelectron., 2017, 90:69-74.

    35. [35]

      YANG Q, LI L, ZHAO F, WANG Y, YE Z, GUO X. Mater. Lett., 2019, 248:89-92.

    36. [36]

      ZHANG H, YAO S, ZHAO C, ZHAO W, LI J, WANG J. Anal. Sci., 2021, 37(10):1355-1360.

    37. [37]

      MENG Y X, ZHAO K F, ZHANG Z K, GAO P, YUAN J, CAI T, TONG Q, HUANG G, HE D N. Nano Res., 2020, 13(3):709-718.

    38. [38]

      GE J, CAI R, CHEN X, WU Q, ZHANG L, JIANG Y, CUI C, WAN S, TAN W. Talanta, 2019, 195:40-45.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    15. [15]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    20. [20]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

Metrics
  • PDF Downloads(8)
  • Abstract views(2144)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return