Citation: ZHANG Yu,  SONG Zhi-Min,  DU Yan. Recent Progress of Nanozyme-Based Sensors in Point-of-Care Testing[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 800-810. doi: 10.19756/j.issn.0253-3820.221610 shu

Recent Progress of Nanozyme-Based Sensors in Point-of-Care Testing

  • Corresponding author: DU Yan, duyan@ciac.ac.cn
  • Received Date: 10 December 2022
    Revised Date: 17 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22174137), the Key Research and Development Project of Jilin Scientific and Technological Development Program (Nos. 202102041266YY, 20230204113YY) and the Changchun Municipal Science and Technology Bureau Special Project on Scientific and Technological Innovation Cooperation (No. 22SH13).

  • Point-of-care testing (POCT) is rapid, portable and accurate, which can break the limitations of space, large and expensive instruments, professional technicians, and long-time consumption. In recent years, a large number of methods, especially those involving signal conversion strategies, have been developed to construct sensitive and rapid sensors based on commercial POCT devices. These sensors are widely used in disease diagnosis, health management, environmental monitoring, and emergency response analysis. With the advantages of high stability, low cost, simple preparation and diverse enzyme-mimicking activities, nanozyme can flexibly engage in the construction of sensors toward different targets, where commercial POCT devices are used as readouts. This review highlighted the recent progress of nanozyme-based sensors in POCT, and sum up several readout signal types including color, pressure, temperature, pH, glucose and electrochemistry. Finally, the limitations of nanozyme-based sensors were discussed and the direction in the future development is prospected.
  • 加载中
    1. [1]

      ZHANG Y, ZHOU N. Electroanalysis, 2022, 34(2):168-183.

    2. [2]

      DAS B, FRANCO J L, LOGAN N, BALASUBRAMANIAN P, KIM M I, CAO C. Nano-Micro Lett., 2021, 13(1):193.

    3. [3]

      WEI M, RAO H, NIU Z, XUE X, LUO M, ZHANG X, HUANG H, XUE Z, LU X. Coord. Chem. Rev., 2021, 447:214149.

    4. [4]

      ZHANG J, LAN T, LU Y. TrAC, Trend Anal. Chem., 2020, 124:115782.

    5. [5]

      QIAN S, CUI Y, CAI Z, LI L. Biosens. Bioelectron. X, 2022, 11:100173.

    6. [6]

    7. [7]

      XIANG Y, LU Y. Nat. Chem., 2011, 3(9):697-703.

    8. [8]

      TANG D, LIN Y, ZHOU Q, LIN Y, LI P, NIESSNER R, KNOPP D. Anal. Chem., 2014, 86(22):11451-11458.

    9. [9]

      YU J, LI F, ZHOU M. Electroanalysis, 2022, 34(2):131.

    10. [10]

      LIU J, GENG Z, FAN Z, LIU J, CHEN H. Biosens. Bioelectron., 2019, 132:17-37.

    11. [11]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    12. [12]

      HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.

    13. [13]

      CHEN W, LI S, WANG J, SUN K, SI Y. Nanoscale, 2019, 11(34):15783-15793.

    14. [14]

      HOU C, WANG Y, DING Q, JIANG L, LI M, ZHU W, PAN D, ZHU H, LIU M. Nanoscale, 2015, 7(44):18770-18779.

    15. [15]

      SUN H, ZHAO A, GAO N, LI K, REN J, QU X. Angew. Chem. Int. Ed., 2015, 54(24):7176-7180.

    16. [16]

      LIAN M, LIU M, ZHANG X, ZHANG W, ZHAO J, ZHOU X, CHEN D. ACS Appl. Mater. Interfaces, 2021, 13(45):53599- 53609.

    17. [17]

      ZHOU C, ZENG Y, SONG Z, LIU Q, ZHANG Y, WANG M, DU Y. Anal. Chem., 2022, 94(38):13261-13268.

    18. [18]

      ALI M, KHALID M A U, SHAH I, KIM S W, KIM Y S, LIM J H, CHOI K H. New J. Chem., 2019, 43(20):7636-7645.

    19. [19]

      JIN R, XING Z, KONG D, YAN X, LIU F, GAO Y, SUN P, LIANG X, LU G. J. Mater. Chem. B, 2019, 7(8):1230-1237.

    20. [20]

      ZHAO L, WANG J, SU D, ZHANG Y, LU H, YAN X, BAI J, GAO Y, LU G. Nanoscale, 2020, 12(37):19420-19428.

    21. [21]

      SU M, CHEN H, ZHANG H, WANG Z. Microchim. Acta, 2022, 189(2):81.

    22. [22]

      JING W, CUI X, KONG F, WEI W, LI Y, FAN L, LI X. Analyst, 2021, 146(1):207-212.

    23. [23]

      CHENG N, ZHU C, WANG Y, DU D, ZHU M J, LUO Y, XU W, LIN Y. J. Anal. Test., 2018, 3(1):99-106.

    24. [24]

      SHI Y, LIU Z, LIU R, WU R, ZHANG J. Chem. Eng. J., 2022, 442:136072.

    25. [25]

      ZHANG J, LI Y, GONG X, WANG Y, FU W. Colloids Surf., B, 2022, 218:112711.

    26. [26]

      ZHAO Y, YANG M, FU Q, OUYANG H, WEN W, SONG Y, ZHU C, LIN Y, DU D. Anal. Chem., 2018, 90(12):7391- 7398.

    27. [27]

      LI J, LIU T, DAHLGREN R A, YE H, WANG Q, DING Y, GAO M, WANG X, WANG H. Anal. Chim. Acta, 2022, 1204:339703.

    28. [28]

      WANG T T, LIO C, HUANG H, WANG R Y, ZHOU H, LUO P, QING L S. Talanta, 2020, 206:120211.

    29. [29]

      YUAN X, ZHAO H, YUAN Y, CHEN M, ZHAO L, XIONG Z. Microchim. Acta, 2022, 189(8):283.

    30. [30]

      SHEN Y, WEI Y, LIU Z, NIE C, YE Y. Microchim. Acta, 2022, 189(6):233.

    31. [31]

      ZHANG P, XIA W, DENG P, MIN Y, TAN J, WANG Y, FU W. Colloids Surf., B, 2021, 206:111953.

    32. [32]

      KONG D, JIN R, ZHAO X, LI H, YAN X, LIU F, SUN P, GAO Y, LIANG X, LIN Y, LU G. ACS Appl. Mater. Interfaces, 2019, 11(12):11857-11864.

    33. [33]

      CHENG N, SONG Y, ZEINHOM M M A, CHANG Y C, SHENG L, LI H, DU D, LI L, ZHU M J, LUO Y, XU W, LIN Y. ACS Appl. Mater. Interfaces, 2017, 9(46):40671-40680.

    34. [34]

      LIU X, WANG F, MENG Y, ZHAO L, SHI W, WANG X, HE Z, CHAO J, LI C. Biosens. Bioelectron., 2022, 207:114208.

    35. [35]

      LIU B, WU Z, LIANG C, LU J, LI J, ZHANG L, LI T, ZHAO W, FU Y, HOU S, TANG X, LI C. Front. Microbiol., 2021, 12:692831.

    36. [36]

      HSU Y P, LI N S, CHEN Y T, PANG H H, WEI K C, YANG H W. Biosens. Bioelectron., 2020, 151:111960.

    37. [37]

      LI N S, CHEN Y T, HSU Y P, PANG H H, HUANG C Y, SHIUE Y L, WEI K C, YANG H W. Biosens. Bioelectron., 2020, 164:112309.

    38. [38]

      LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2020, 173:112817.

    39. [39]

      KONG D Y, HEO N S, KANG J W, LEE J B, KIM H J, KIM M I. Anal. Bioanal. Chem., 2022, 414(10):3257-3265.

    40. [40]

      ALIZADEH N, SALIMI A, HALLAJ R. Sens. Actuators, B, 2019, 288:44-52.

    41. [41]

      CHENG D, QIN J, FENG Y, WEI J. Biosensors, 2021, 11(8):258.

    42. [42]

      ZHOU Q, YANG H, CHEN X, XU Y, HAN D, ZHOU S, LIU S, SHEN Y, ZHANG Y. Angew. Chem. Int. Ed., 2022, 61(2):e202112453.

    43. [43]

      MUJTABA J, LIU J, DEY K K, LI T, CHAKRABORTY R, XU K, MAKAROV D, BARMIN R A, GORIN D A, TOLSTOY V P, HUANG G, SOLOVEV A A, MEI Y. Adv. Mater., 2021, 33(22):e2007465.

    44. [44]

      LIU X, MEI X, YANG J, LI Y. ACS Appl. Mater. Interfaces, 2022, 14(5):6985-6993.

    45. [45]

      FU Q, WU Z, DU D, ZHU C, LIN Y, TANG Y. ACS Sens., 2017, 2(6):789-795.

    46. [46]

      LIU D, LIU F, HUANG Y, SONG Y, ZHU Z, ZHOU S, YANG C. Analyst, 2019, 144(14):4188-4193.

    47. [47]

      ZHAO Y, BU S, WANG C, MA C, LI Z, ZHANG W, WAN J. Anal. Lett., 2020, 54(10):1603-1615.

    48. [48]

      LI L, DENG H, ZHAO Z, LIU Z. Analyst, 2021, 146(19):5898-5903.

    49. [49]

      SHI L, TANG Q, YANG B, LIU W, LI B, YANG C, JIN Y. Anal. Chem., 2022, 94(41):14453-14459.

    50. [50]

      ZHANG Y, LIU Q, MA C B, WANG Q, YANG M, DU Y. Theranostics, 2020, 10(11):5064-5073.

    51. [51]

      YU Z, CAI G, LIU X, TANG D. ACS Appl. Mater. Interfaces, 2020, 12(36):40133-40140.

    52. [52]

      YU Z, TANG Y, CAI G, REN R, TANG D. Anal. Chem., 2019, 91(2):1222-1226.

    53. [53]

      ZHU L, LV Z, YIN Z, LI M, TANG D. Sens. Actuators, B, 2021, 343:130121.

    54. [54]

      YU Z, CAI G, TONG P, TANG D. ACS Sens., 2019, 4(9):2272-2276.

    55. [55]

      HUANG L, YU Z, CHEN J, TANG D. ACS Appl. Bio Mater., 2020, 3(12):9156-9163.

    56. [56]

      MA X, WANG Z, HU X, CHEN J, ZHANG H, LI X, XIE F, XU J. J. Hazard. Mater., 2021, 415:125689.

    57. [57]

      FU G, SANJAY S T, ZHOU W, BREKKEN R A, KIRKEN R A, LI X J. Anal. Chem., 2018, 90(9):5930-5937.

    58. [58]

      WEI K, RAO H, XUE X, LUO M, XUE Z. Microchem. J., 2021, 170:106736.

    59. [59]

      AN P, RAO H, GAO M, XUE X, LIU X, LU X, XUE Z. Chem. Commun., 2020, 56(68):9799-9802.

    60. [60]

      ZHANG K, ZHOU X, XUE X, LUO M, LIU X, XUE Z. Anal. Bioanal. Chem., 2021, 413(14):3655-3665.

    61. [61]

      LU D, JIANG H, ZHANG G, LUO Q, ZHAO Q, SHI X. ACS Appl. Mater. Interfaces, 2021, 13(22):25738-25747.

    62. [62]

      BU S, WANG K, WANG C, LI Z, HAO Z, LIU W, WAN J. Microchim. Acta, 2020, 187(12):679.

    63. [63]

      LIANG M, CAI X, GAO Y, YAN H, FU J, TANG X, ZHANG Q, LI P. Biosens. Bioelectron., 2022, 213:114435.

    64. [64]

      DU Y, KE Z, ZHANG J, FENG G. Biosens. Bioelectron., 2022, 216:114656.

    65. [65]

      LU L, HU X, ZENG R, LIN Q, HUANG X, LI M, TANG D. Anal. Chim. Acta, 2022, 1229:340383.

    66. [66]

      LIN S, HU X, LIN J, WANG S, XU J, CAI F, LIN J. Analyst, 2021, 146(13):4391-4399.

    67. [67]

      SHANG X, YU J, WANG C, DU Y. Electroanalysis, 2021, 34(3):535-541.

    68. [68]

      LI B, GE L, LYU P, CHEN M, ZHANG X, XIE S, WU Q, KWOK H F. Microchim. Acta, 2021, 188(1):14.

    69. [69]

      LAN T, ZHANG J, LU Y. Biotechnol. Adv., 2016, 34(3):331-341.

    70. [70]

      ZHANG X, HUANG X, WANG Z, ZHANG Y, HUANG X, LI Z, DAGLIA M, XIAO J, SHI J, ZOU X. Chem. Eng. J., 2022, 429:132243.

    71. [71]

      KIM H Y, PARK K S, PARK H G. Theranostics, 2020, 10(10):4507-4514.

    72. [72]

      SANATI A, ESMAEILI Y, BIDRAM E, SHARIATI L, RAFIENIA M, MAHSHID S, PARLAK O. Appl. Mater. Today, 2022, 26:101350.

    73. [73]

      LI J, JIAO L, XIAO X, NASHALIAN A, MATHUR S, ZHU Z, WU W, GUO W, ZHAI Y, LU X, CHEN J. Electroanalysis, 2022, 34(11):1763-1771.

    74. [74]

      KOMKOVA M A, ELISEEV A A, POYARKOV A A, DABOSS E V, EVDOKIMOV P V, ELISEEV A A, KARYAKIN A A. Biosens. Bioelectron., 2022, 202:113970.

    75. [75]

      YU K, LI M, CHAI H, LIU Q, HAI X, TIAN M, QU L, XU T, ZHANG G, ZHANG X. Chem. Eng. J., 2023, 451:138321.

  • 加载中
    1. [1]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    2. [2]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    3. [3]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    4. [4]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

Metrics
  • PDF Downloads(11)
  • Abstract views(2987)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return