Citation: GAO Jing,  ZHAO Guan-Fang,  LIU Chao,  LI Hong-Ru,  YU Yang,  ZHANG Tao,  WANG Hong-Da. Biomembranomics at Molecular Level: A New Generation of Biomics[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 721-732. doi: 10.19756/j.issn.0253-3820.221601 shu

Biomembranomics at Molecular Level: A New Generation of Biomics

  • Corresponding author: WANG Hong-Da, hdwang@ciac.ac.cn
  • Received Date: 6 December 2022
    Revised Date: 11 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22150003, 21727816, 21721003) and the Scientific Instrument Developing Project of Chinese Academy of Sciences (No. ZDKYYQ20220005).

  • Biomics is an important research means to reveal the laws of life and human health. However, it is essentially a large-scale feature study at the overall level, and cannot be directly used for disease diagnosis and treatment. Therefore, it is urgent to establish a new omics system to study the structure, location, orderly interaction and dynamic function of biomolecules at the molecular level. As the basic unit of life structure, cells are defined by biomembranes. The biomembranes form an important barrier between living cells and the surrounding environment, and separate organelles in eukaryotic cells. The study of membrane structure has a history of nearly one hundred years. Although many models of cell membrane structure have been proposed, they are still in the stage of model hypothesis. Because the structure, function and interaction between membrane components are indivisible organic whole, the research on one aspect alone cannot uncover the biomembrane system in essence. Based on this, this paper proposed a new concept of ″biomembromics″, which regarded the structure, function and intermolecular interaction of membrane system as an organic whole, and established a new and real membrane structure at the molecular level. In addition, the latest progress in the researches of membrane structure, properties and functions at the molecular level were summarized. Finally, the development trend, opportunities and challenges of biomembranomics were discussed.
  • 加载中
    1. [1]

      HOBSON J P, LIU S, RØNØ B, LEPPLA S H, BUGGE T H. Nat. Methods, 2006, 3(4):259-261.

    2. [2]

      SIMONS K, TOOMRE D. Nat. Rev. Mol. Cell Biol., 2000, 1(1):31-39.

    3. [3]

      SCHLESSINGER J, AXELROD D, KOPPEL D E, WEBB W W, ELSON E L. Science, 1977, 195(4275):307-309.

    4. [4]

      ESCRIBÁ P V, GONZÁLEZ-ROS J M, GOÑI F M, KINNUNEN P K J, VIGH L, SÁNCHEZ-MAGRANER L, FERNÁNDEZ A M, BUSQUETS X, HORVÁTH I, BARCELÓ-COBLIJN G. J. Cell. Mol. Med., 2008, 12(3):829-875.

    5. [5]

      VAN MEER G, VOELKER D R, FEIGENSON G W. Nat. Rev. Mol. Cell Biol., 2008, 9(2):112-124.

    6. [6]

      BUSCHIAZZO J, IALY-RADIO C, AUER J, WOLF J P, SERRES C, LEFEVRE B, ZIYYAT A. PLoS One, 2013, 8(4):e62919.

    7. [7]

      NG D P, POULSEN B E, DEBER C M. Biochim. Biophys. Acta, Biomembr., 2012, 1818(4):1115-1122.

    8. [8]

      STEVENS T J, ARKIN I T. Protein Sci., 2000, 9(3):505-511.

    9. [9]

      SZLASA W, ZENDRAN I, ZALESIŃSKA A, TAREK M, KULBACKA J. J. Bioenerg. Biomembr., 2020, 52(5):321-342.

    10. [10]

      LUO X, ZHAO X, CHENG C, LI N, LIU Y, CAO Y. Exp. Mol. Med., 2018, 50:127.

    11. [11]

      CARTER P, SMITH L, RYAN M. Endocr. Relat. Cancer, 2004, 11(4):659-687.

    12. [12]

      HOPKINS A L, GROOM C R. Nat. Rev. Drug Discovery, 2002, 1(9):727-730.

    13. [13]

      GORTER E, GRENDEL F. J. Exp. Med., 1925, 41(4):439-443.

    14. [14]

      SINGER S J, NICOLSON G L. Science, 1972, 175(4023):720-731.

    15. [15]

      ZHAO W, TIAN Y, CAI M, WANG F, WU J, GAO J, LIU S, JIANG J, JIANG S, WANG H. PLoS One, 2014, 9(5):e91595.

    16. [16]

      PERCEC V, BERA T K. Biomacromolecules, 2002, 3(1):167-181.

    17. [17]

      FAHY E, COTTER D, SUD M, SUBRAMANIAM S. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2011, 1811(11):637- 647.

    18. [18]

      VAN MEER G. EMBO J., 2005, 24(18):3159-3165.

    19. [19]

      KENNEDY E P. Proc. Aust. Biochem. Soc., 1973, 6:P2-P3.

    20. [20]

      BROWN M S, GOLDSTEIN J L. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(20):11041-11048.

    21. [21]

      GROULEFF J, IRUDAYAM S J, SKEBY K K, SCHIØTT B. Biochim. Biophys. Acta, Biomembr., 2015, 1848(9):1783- 1795.

    22. [22]

      BROWN D A, LONDON E. J. Membr. Biol., 1998, 164(2):103-114.

    23. [23]

      BOES D M, GODOY-HERNANDEZ A, MCMILLAN D G G. Membranes, 2021, 11(5):346.

    24. [24]

      ISHIO A, SASAMURA T, AYUKAWA T, KURODA J, ISHIKAWA H O, AOYAMA N, MATSUMOTO K, GUSHIKEN T, OKAJIMA T, YAMAKAWA T, MATSUNO K. J. Biol. Chem., 2015, 290(1):505-519.

    25. [25]

      KASZUBA K, GRZYBEK M, ORŁOWSKI A, DANNE R, RÓG T, SIMONS K, COSKUN Ü, VATTULAINEN I. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(14):4334-4339.

    26. [26]

      BUCIOR I, BURGER M M. Glycoconjugate J., 2004, 21(3/4):111-123.

    27. [27]

      BOSCHER C, DENNIS J W, NABI I R. Curr. Opin. Cell Biol., 2011, 23(4):383-392.

    28. [28]

      OHTSUBO K, MARTH J D. Cell, 2006, 126(5):855-867.

    29. [29]

      GLAVEY S V, HUYNH D, REAGAN M R, MANIER S, MOSCHETTA M, KAWANO Y, ROCCARO A M, GHOBRIAL I M, JOSHI L, O'DWYER M E. Blood Rev., 2015, 29(4):269-279.

    30. [30]

      SOTERIOU C, KALLI A C, CONNELL S D, TYLER A I I, THORNE J L. Prog. Lipid Res., 2021, 81:101080.

    31. [31]

      SIMONS K, IKONEN E. Nature, 1997, 387(6633):569-572.

    32. [32]

      KENWORTHY A K. Methods Mol. Biol. (Clifton, NJ), 2007, 398:179-192.

    33. [33]

      SCHWILLE P, MEYER-ALMES F J, RIGLER R. Biophys. J., 1997, 72(4):1878-1886.

    34. [34]

      SUZUKI K G N, KASAI R S, HIROSAWA K M, NEMOTO Y L, ISHIBASHI M, MIWA Y, FUJIWARA T K, KUSUMI A. Nat. Chem. Biol., 2012, 8(9):774-783.

    35. [35]

      FENG L, LI J, SUN J, WANG L, FAN C, SHEN J. Adv. Healthcare Mater., 2021, 10(6):2001718.

    36. [36]

      XU H, ZHANG J, ZHOU Y, ZHAO G, CAI M, GAO J, SHAO L, SHI Y, LI H, JI H, ZHAO Y, WANG H. Research, 2022, 2022:9835035.

    37. [37]

      XIU W, GAN S, WEN Q, QIU Q, DAI S, DONG H, LI Q, YUWEN L, WENG L, TENG Z, MOU Y, WANG L. Research, 2020, 2020:9426453.

    38. [38]

      SCHOPPER S, KAHRAMAN A, LEUENBERGER P, FENG Y, PIAZZA I, MÜLLER O, BOERSEMA P J, PICOTTI P. Nat. Protoc., 2017, 12(11):2391-2410.

    39. [39]

      BARROSO B, BISCHOFF R. J. Chromatogr. B, 2005, 814(1):21-28.

    40. [40]

      LOZANO M M, LIU Z, SUNNICK E, JANSHOFF A, KUMAR K, BOXER S G. J. Am. Chem. Soc., 2013, 135(15):5620-5630.

    41. [41]

      FRISZ J F, LOU K, KLITZING H A, HANAFIN W P, LIZUNOV V, WILSON R L, CARPENTER K J, KIM R, HUTCHEON I D, ZIMMERBERG J, WEBER P K, KRAFT M L. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(8):E613.

    42. [42]

      HE C, HU X, JUNG R S, WESTON T A, SANDOVAL N P, TONTONOZ P, KILBURN M R, FONG L G, YOUNG S G, JIANG H. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(8):2000-2005.

    43. [43]

      CHOREV D S, BAKER L A, WU D, BEILSTEN-EDMANDS V, ROUSE S L, ZEEV-BEN-MORDEHAI T, JIKO C, SAMSUDIN F, GERLE C, KHALID S, STEWART A G, MATTHEWS S J, GRÜNEWALD K, ROBINSON C V. Science, 2018, 362(6416):829-834.

    44. [44]

      ALESSANDRINI A, FACCI P. Meas. Sci. Technol., 2005, 16(6):R65-R92.

    45. [45]

      WANG H, HAO X, SHAN Y, JIANG J, CAI M, SHANG X. Ultramicroscopy, 2010, 110(4):305-312.

    46. [46]

      MOU J, YANG J, SHAO Z. J. Mol. Biol., 1995, 248(3):507-512.

    47. [47]

      CAI M, ZHAO W, SHANG X, JIANG J, JI H, TANG Z, WANG H. Small, 2012, 8(8):1243-1250.

    48. [48]

      LI B, WEI Y, LI Q, CHEN N, LI J, LIU L, ZHANG J, WANG Y, SUN Y, SHI J, WANG L, SHAO Z, HU J, FAN C. Adv. Sci., 2021, 8(24):2102989.

    49. [49]

      PLODINEC M, LOPARIC M, MONNIER C A, OBERMANN E C, ZANETTI-DALLENBACH R, OERTLE P, HYOTYLA J T, AEBI U, BENTIRES-ALJ M, LIM R Y H, SCHOENENBERGER C A. Nat. Nanotechnol., 2012, 7(11):757-765.

    50. [50]

      GOSWAMI D, GOWRISHANKAR K, BILGRAMI S, GHOSH S, RAGHUPATHY R, CHADDA R, VISHWAKARMA R, RAO M, MAYOR S. Cell, 2008, 135(6):1085-1097.

    51. [51]

      SREEDHARAN S, GILL M R, GARCIA E, SAEED H K, ROBINSON D, BYRNE A, CADBY A, KEYES T E, SMYTHE C, PELLETT P, DE LA SERNA J B, THOMAS J A. J. Am. Chem. Soc., 2017, 139(44):15907-15913.

    52. [52]

      BATES M, HUANG B, ZHUANG X. Curr. Opin. Chem. Biol., 2008, 12(5):505-514.

    53. [53]

      GWOSCH K C, PAPE J K, BALZAROTTI F, HOESS P, ELLENBERG J, RIES J, HELL S W. Nat. Methods, 2020, 17(2):217-224.

    54. [54]

      GU L, LI Y, ZHANG S, XUE Y, LI W, LI D, XU T, JI W. Nat. Methods, 2019, 16(11):1114-1118.

    55. [55]

      LORIZATE M, TERRONES O, NIETO-GARAI J A, ROJO-BARTOLOMÉ I, CICERI D, MORANA O, OLAZARINTXAUSTI J, ARBOLEYA A, MARTIN A, SZYNKIEWICZ M, CALLEJA-FELIPE M, BERNARDINO DE LA SERNA J B, CONTRERAS F X. Small Methods, 2021, 5(9):2100430.

    56. [56]

      DANYLCHUK D I, MOON S, XU K, KLYMCHENKO A S. Angew. Chem. Int. Ed., 2019, 58(42):14920-14924.

    57. [57]

      WU J, GAO J, QI M, WANG J, CAI M, LIU S, HAO X, JIANG J, WANG H. Nanoscale, 2013, 5(23):11582-11586.

    58. [58]

      WANG Y, GAO J, GUO X, TONG T, SHI X, LI L, QI M, WANG Y, CAI M, JIANG J, XU C, JI H, WANG H. Cell Res., 2014, 24(8):959-976.

    59. [59]

      YAN Q, LU Y, ZHOU L, CHEN J, XU H, CAI M, SHI Y, JIANG J, XIONG W, GAO J, WANG H. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(27):7033-7038.

    60. [60]

      CHEN J, GAO J, CAI M, XU H, JIANG J, TIAN Z, WANG H. Nanoscale, 2016, 8(28):13611-13619.

    61. [61]

      CHEN J, LIU T, GAO J, GAO L, ZHOU L, CAI M, SHI Y, XIONG W, JIANG J, TONG T, WANG H. Adv. Sci., 2016, 3(12):1600270.

    62. [62]

      SHAN Y, WANG H. Chem. Soc. Rev., 2015, 44(11):3617-3638.

    63. [63]

      TAYLOR K A, GLAESER R M. Science, 1974, 186(4168):1036-1037.

    64. [64]

      SCHUR F K M. Curr. Opin. Struct. Biol., 2019, 58:1-9.

    65. [65]

    66. [66]

      GLAESER R M. Annu. Rev. Phys. Chem., 1985, 36(1):243-275.

    67. [67]

      SENTE A, NAKANE T, KOTECHA A, ARICESCU A R, SCHERES S H W. Acta Crystallogr., Sect. A:Found. Adv., 2020, 76:A220.

    68. [68]

      BECK M, BAUMEISTER W. Trends Cell Biol., 2016, 26(11):825-837.

    69. [69]

      HIMES B A, ZHANG P. Nat. Methods, 2018, 15(11):955-961.

    70. [70]

      ZHAO G, CHENG S, YU Y, ZOU T, WANG H, TAO C L, BI G, ZHOU Z H, WANG H. bioRxiv, 2021, DOI:10.1101/2021.12.03.471052.

    71. [71]

      LIU C, ZHOU Y, ZOU T, ZHAO G, ZHANG J, WANG H, WANG H. bioRxiv, 2022, DOI:10.1101/2022.09.19.508494.

    72. [72]

      INGOLFSSON H I, ARNAREZ C, PERIOLE X, MARRINK S J. J. Cell Sci., 2016, 129(2):257-268.

    73. [73]

      GOOSSENS K, DE WINTER H. J. Chem. Inf. Model., 2018, 58(11):2193-2202.

    74. [74]

      BILLESBØLLE C B, AZUMAYA C M, KRETSCH R C, POWERS A S, GONEN S, SCHNEIDER S, ARVEDSON T, DROR R O, CHENG Y, MANGLIK A. Nature, 2020, 586(7831):807-811.

    75. [75]

      MANLEY S, GILLETTE J M, PATTERSON G H, SHROFF H, HESS H F, BETZIG E, LIPPINCOTT-SCHWARTZ J. Nat. Methods, 2008, 5(2):155-157.

    76. [76]

      KIM D H, ZHOU K, KIM D K, PARK S, NOH J, KWON Y, KIM D, SONG N W, LEE J B, SUH P G, LEE N K, RYU S H. Angew. Chem. Int. Ed., 2015, 54(24):7028-7032.

    77. [77]

      ZHOU L, GAO J, WANG H, SHI Y, XU H, YAN Q, JING Y, JIANG J, CAI M, WANG H. Nanoscale, 2020, 12(18):9950-9957.

    78. [78]

      ZHAO G, LI H, GAO J, CAI M, XU H, SHI Y, WANG H, WANG H. Anal. Chem., 2021, 93(42):14113-14120.

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    5. [5]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    12. [12]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(12)
  • Abstract views(2379)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return