Citation: LI Cao-Ling,  WU Kang-Bing,  NIU Li. Recent Advances in Electrochemical Sensing Applications of Copper-based Metal-Organic Frameworks[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 463-471. doi: 10.19756/j.issn.0253-3820.221537 shu

Recent Advances in Electrochemical Sensing Applications of Copper-based Metal-Organic Frameworks

  • Corresponding author: WU Kang-Bing, kbwu@hust.edu.cn
  • Received Date: 1 November 2022
    Revised Date: 8 January 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21976062, 21775050) and the National Key Research and Development Project of China (No.2015CB352100).

  • Metal-organic frameworks (MOFs) are a type of new crystalline porous material formed by self-assembly of metal ions/clusters and organic ligands. MOFs have shown huge potential in electrochemical sensing due to their high porosity, large specific surface area, high electrocatalytic activity, and adjustable and diverse structure. Among numerous MOFs, copper-based metal-organic frameworks (Cu-MOFs) have attracted more attention because of their high electrocatalytic activity. The studies on the properties and applications of Cu-MOFs prepared by different ligands and methods are increasing. Currently, Cu-MOFs are also achieving wide range of applications in life electrochemical sensing, environmental electrochemical detection and food safety electrochemical analysis. This article mainly introduced the recent research progress of Cu-MOFs prepared by different methods and their various composites combined with the relevant researches of our group in electrochemical sensing applications. Finally, the future applications and challenges of electrochemical sensors based on Cu-MOFs were prospected.
  • 加载中
    1. [1]

      YUAN S, FENG L, WANG K, PANG J, BOSCH M, LOLLAR C, SUN Y, QIN J, YANG X, ZHANG P, WANG Q, ZOU L, ZHANG Y, ZHANG L, FANG Y, LI J, ZHOU H. Adv. Mater., 2018, 30(37):1704303.

    2. [2]

      DING M, FLAIG R W, JIANG H L, YAGHI O M. Chem. Soc. Rev., 2019, 48(10):2783-2828.

    3. [3]

      CHO H S, YANG J, GONG X, ZHANG Y B, MOMMA K, WECKHUYSEN B M, DENG H, KANG J K, YAGHI O M, TERASAKI O. Nat. Chem., 2019, 11(6):562-570.

    4. [4]

      MEHTA J, BHARDWAJ N, BHARDWAJ S K, KIM K H, DEEP A. Coord. Chem. Rev., 2016, 322:30-40.

    5. [5]

      CAO X, TAN C, SINDORO M, ZHANG H. Chem. Soc. Rev., 2017, 46(10):2660-2677.

    6. [6]

      PACHFULE P, YANG X, ZHU Q L, TSUMORI N, UCHIDA T, XU Q. J. Mater. Chem. A, 2017, 5(10):4835-4841.

    7. [7]

      JIAO L, WANG Y, JIANG H L, XU Q. Adv. Mater., 2018, 30(37):1703663.

    8. [8]

      XIAO Y H, GU Z G, ZHANG J. Nanoscale, 2020, 12(24):12712-12730.

    9. [9]

      LI H, WANG K, SUN Y, LOLLAR C T, LI J, ZHOU H. Mater. Today, 2018, 21(2):108-121.

    10. [10]

      NIU Z, CUI X, PHAM T, VERMA G, LAN P C, SHAN C, XING H, FORREST K A, SUEPAUL S, SPACE B, NAFADY A, AL-ENIZI A M, MA S. Angew. Chem. Int. Ed., 2021, 60(10):5283-5288.

    11. [11]

      DAGLAR H, GULBALKAN H C, AVCI G, AKSU G O, ALTUNDAL O F, ALTINTAS C, ERUCAR I, KESKIN S. Angew. Chem. Int. Ed., 2021, 60(14):7828-7837.

    12. [12]

      DUTTA S, KIM J, HSIEH P H, HSU Y S, KANETI Y V, SHIEH F K, YAMAUCHI Y, WU K C W. Small Methods, 2019, 3(11):1900213.

    13. [13]

      FANG C, DENG Z, CAO G, CHU Q, WU Y, LI X, PENG X, HAN G. Adv. Funct. Mater., 2020, 30(16):1910085.

    14. [14]

      ARUN KUMAR S, BALASUBRAMANIAM B, BHUNIA S, JAISWAL M K, VERMA K, PRATEEK K, KHADEMHOSSEINI A, GUPTA R K, GAHARWAR A K. Wiley Interdiscip. Rew. Nanomed. Nanobiotechnol., 2021, 13(2):e1674.

    15. [15]

      LI R, CHEN T, PAN X. ACS Nano, 2021, 15(3):3808-3848.

    16. [16]

      LI S, LIN J, XIONG W, GUO X, WU D, ZHANG Q, ZHU Q L, ZHANG L. Coord. Chem. Rev., 2021, 438:213872.

    17. [17]

      DUAN H, ZHAO Z, LU J, HU W, ZHANG Y, LI S, ZHANG M, ZHU R, PANG H. ACS Appl. Mater. Interfaces, 2021, 13(28):33083-33090.

    18. [18]

      JI L, WANG J, WU K, YANG N. Adv. Funct. Mater., 2018, 28(13):1706961.

    19. [19]

      JI L, HAO J, WU K, YANG N. J. Phys. Chem. C, 2019, 123(4):2248-2255.

    20. [20]

      HU P, ZHU X, LUO X, HU X, JI L. Microchim. Acta, 2020, 187(2):145.

    21. [21]

      MUELLER U, SCHUBERT M, TEICH F, PUETTER H, SCHIERLE-ARNDT K, PASTRÉ J. J. Mater. Chem., 2006, 16(7):626-636.

    22. [22]

      LIU Y, WEI Y, LIU M, BAI Y, WANG X, SHANG S, CHEN J, LIU Y. Angew. Chem. Int. Ed., 2021, 60(6):2887-2891.

    23. [23]

      SHI E, ZOU X, LIU J, LIN H, ZHANG F, SHI S, LIU F, ZHU G, QU F. Dalton Trans., 2016, 45(18):7728-7736.

    24. [24]

      SACHDEVA S, VENKATESH M R, MANSOURI B E, WEI J, BOSSCHE A, KAPTEIJN F, ZHANG G Q, GASCON J, DE SMET L C P M, SUDHÖLTER E J R. Small, 2017, 13(29):1604150.

    25. [25]

      JI L, WANG Y, WU K, ZHANG W. Talanta, 2016, 159:215-221.

    26. [26]

      JI L D, CHENG Q, WU K B, YANG X F. Sens. Actuators, B, 2016, 231:12-17.

    27. [27]

      GUO X, LIN C, ZHANG M, DUAN X, DONG X, SUN D, PAN J, YOU T. Front. Chem., 2021, 9:743637.

    28. [28]

      BAGHAYERI M, AMIRI A, SAFAPOUR MOGHADDAM B, NODEHI M. J. Electrochem. Soc., 2020, 167(16):167522.

    29. [29]

      LI C, HAO J, WU K. Anal. Chim. Acta, 2019, 1085:68-74.

    30. [30]

      LI C, WU K. Anal. Chim. Acta, 2021, 1162:338473.

    31. [31]

      LI C, SHEN J, WU K, YANG N. Small, 2022, 18(11):2106607.

    32. [32]

      LI J, XIA J, ZHANG F, WANG Z, LIU Q. J. Chin. Chem. Soc., 2018, 65(6):743-749.

    33. [33]

      KARIMI-HARANDI M H, SHABANI-NOOSHABADI M, DARABI R. J. Electrochem. Soc., 2021, 168(9):097507.

    34. [34]

      CHEN S, WANG C, ZHANG M, ZHANG W, QI J, SUN X, WANG L, LI J. J. Hazard. Mater., 2020, 390:122157.

    35. [35]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. Sens. Actuators, B, 2019, 283:487-494.

    36. [36]

      MAHMOUD A M, MAHNASHI M H, EL-WEKIL M M. Talanta, 2021, 221:121562.

    37. [37]

      SINGH S, NUMAN A, ZHAN Y, SINGH V, VAN HUNG T, NAM N D. J. Hazard. Mater., 2020, 399:123042.

    38. [38]

      BRONDANI D, ZAPP E, DA SILVA HEYING R, DE SOUZA B, CRUZ VIEIRA I. Electroanalysis, 2017, 29(12):2810-2817.

    39. [39]

      ZHANG D, ZHANG J, ZHANG R, SHI H, GUO Y, GUO X, LI S, YUAN B. Talanta, 2015, 144:1176-1181.

    40. [40]

      XIAO J, HU X, WANG K, ZOU Y, GYIMAH E, YAKUBU S, ZHANG Z. Biosens. Bioelectron., 2020, 150:111883.

    41. [41]

      XU X, ZHANG H, LI C H, GUO X M. Microchem. J., 2022, 175:107198.

    42. [42]

      XU X, LI C H, ZHANG H, GUO X M. Nanomaterials, 2022, 12(3):482.

    43. [43]

      QIAO X, ARSALAN M, MA X, WANG Y, YANG S, WANG Y, SHENG Q, YUE T. Anal. Bioanal. Chem., 2021, 413(3):839-851.

    44. [44]

      JI L, WANG Q, PENG L, LI X, ZHU X, HU P. Materials, 2022, 15(13):4625.

    45. [45]

      HMADEH M, LU Z, LIU Z, GÁNDARA F, FURUKAWA H, WAN S, AUGUSTYN V, CHANG R, LIAO L, ZHOU F, PERRE E, OZOLINS V, SUENAGA K, DUAN X, DUNN B, YAMAMTO Y, TERASAKI O, YAGHI O M. Chem. Mater., 2012, 24(18):3511-3513.

    46. [46]

      WU F, FANG W, YANG X, XU J, XIA J, WANG Z. J. Chin. Chem. Soc., 2019, 66(5):522-528.

    47. [47]

      HU Q, QIN J, WANG X F, RAN G Y, WANG Q, LIU G X, MA J P, GE J Y, WANG H Y. Front. Chem., 2021, 9:1034.

    48. [48]

      DONG S Y, SUO G C, LI N, CHEN Z, PENG L, FU Y L, YANG Q, HUANG T L. Sens. Actuators, B, 2016, 222:972-979.

    49. [49]

      REZKI M, SEPTIANI N L W, IQBAL M, HARIMURTI S, SAMBEGORO P, ADHIKA D R, YULIARTO B. J. Mater. Chem. B, 2021, 9(28):5711-5721.

    50. [50]

      JI L, LI F, LI C, HU P. Microchem. J., 2022, 181:107688.

    51. [51]

      MINH T T, PHONG N H, VAN DUC H, KHIEU D Q. J. Mater. Sci., 2018, 53(4):2453-2471.

    52. [52]

      SOFI F A, BHAT M A, MAJID K. New J. Chem., 2019, 43(7):3119-3127.

    53. [53]

      ZHENG Y, ZHENG S, XUE H, PANG H. Adv. Funct. Mater., 2018, 28(47):1804950.

    54. [54]

      KALAJ M, BENTZ K C, AYALA S, PALOMBA J M, BARCUS K S, KATAYAMA Y, COHEN S M. Chem. Rev., 2020, 120(16):8267-8302.

    55. [55]

      CHRONOPOULOS D D, SAINI H, TANTIS I, ZBOŘIL R, JAYARAMULU K, OTYEPKA M. Small, 2021, 18(4):2104628.

    56. [56]

      LI X, LI C, WU C, WU K. Anal. Chem., 2019, 91(9):6043-6050.

    57. [57]

      NABI S, SOFI F A, RASHID N, INGOLE P P, BHAT M A. New J. Chem., 2022, 46(4):1588-1600.

    58. [58]

      ZHANG C, HAN M, YU L, QU L, LI Z. J. Electroanal. Chem., 2021, 890:115232.

    59. [59]

      ZHOU Y, LI C, HAO Y, YE B, XU M. Talanta, 2018, 188:282-287.

    60. [60]

      HABIBI B, PASHAZADEH S, SAGHATFOROUSH L A, PASHAZADEH A. J. Electroanal. Chem., 2021, 888:115210.

    61. [61]

      SARAF M, RAJAK R, MOBIN S M. J. Mater. Chem. A, 2016, 4(42):16432-16445.

    62. [62]

      WANG L, YANG H, HE J, ZHANG Y, YU J, SONG Y. Electrochim. Acta, 2016, 213:691-697.

    63. [63]

      ZHOU S, JIANG L, ZHANG J, ZHAO P, YANG M, HUO D, LUO X, SHEN C, HOU C. Microchim. Acta, 2021, 188(5):160.

    64. [64]

      WANG X, WANG Q, WANG Q, GAO F, GAO F, YANG Y, GUO H. ACS Appl. Mater. Interfaces, 2014, 6(14):11573-11580.

    65. [65]

      YANG Y, WANG Q, QIU W, GUO H, GAO F. J. Phys. Chem. C, 2016, 120(18):9794-9803.

    66. [66]

      LI J, XIA J, ZHANG F, WANG Z, LIU Q. Talanta, 2018, 181:80-86.

    67. [67]

      WANG Y, CAO W, WANG L, ZHUANG Q, NI Y. Microchim. Acta, 2018, 185(6):315.

    68. [68]

      MA B, GUO H, WANG M, LI L, JIA X, CHEN H, XUE R, YANG W. Electroanalysis, 2019, 31(6):1002-1008.

    69. [69]

      WANG X, ZHANG J, WEI Y, XING T, CAO T, WU S, ZHU F. Analyst, 2020, 145(5):1933-1942.

    70. [70]

      ZHOU J, LI X, YANG L, YAN S, WANG M, CHENG D, CHEN Q, DONG Y, LIU P, CAI W, ZHANG C. Anal. Chim. Acta, 2015, 899:57-65.

    71. [71]

      SHI L M, PAN J X, ZHOU B, JIANG X. J. Mater. Chem. B, 2015, 3(48):9340-9348.

    72. [72]

      WU L, LU Z, YE J. Biosens. Bioelectron., 2019, 135:45-49.

    73. [73]

      SINGH S, NUMAN A, SOMAILY H H, DAWSARI M M A, ALQARNI M H S, ALAM A, KUMAR P. J. Environ. Chem. Eng., 2021, 9(6):106534.

    74. [74]

      LIU C, BO X J, GUO L P. Sens. Actuator, B, 2019, 297:126741.

    75. [75]

      ZHENG W, LIU Y, YANG P, CHEN Y, TAO J, HU J, ZHAO P. J. Electroanal. Chem., 2020, 862:114018.

    76. [76]

      ZHAN X H, HU S Y, WANG J Q, CHEN H, CHEN X M, YANG J B, YANG H, SU Z H. Sens. Actuators, B, 2021, 346:130499.

    77. [77]

      CHEN H Y, YANG T, LIU F Q, LI W H. Sens. Actuators, B, 2019, 286:401-407.

    78. [78]

      FERRAZ N V D, VASCONCELOS W S, SILVA C S, ALVES S, AMORIM C G, MONTENEGRO M D B S M, AREIAS M C D. Sens. Actuators, B, 2020, 307:127636.

    79. [79]

      DANG W, SUN Y, JIAO H, XU L, LIN M. J. Electroanal. Chem., 2020, 856:113592.

    80. [80]

      MOLLARASOULI F, KURBANOGLU S, ASADPOUR-ZEYNALI K, OZKAN S A. J. Electroanal. Chem., 2020, 856:113672.

    81. [81]

      WANG B, KANG K, JI X, LIU Y, LI X, WANG L, REN J. Nano, 2020, 15(12):2050155.

    82. [82]

      MA J, BAI W, ZHENG J. Microchim. Acta, 2019, 186(7):482.

    83. [83]

      LIU T T, ZHOU M, PU Y X, LIU L Q, LI F F, LI M S, ZHANG M X. Sens. Actuators, B, 2021, 342:130047.

    84. [84]

      GUPTA A, BHARDWAJ S K, SHARMA A L, KIM K H, DEEP A. Environ. Res., 2019, 171:395-402.

    85. [85]

      MA J, ZHENG J. Microchim. Acta, 2020, 187(7):389.

    86. [86]

      SAEDI H, FAT'HI M R, ZARGAR B. J. Chin. Chem. Soc, 2021, 68(10):1954-1964.

    87. [87]

      ZHONG Q, LI Y, ZHANG G. Chem. Eng. J., 2021, 409:128099.

    88. [88]

      CHENG D, LI P, ZHU X, LIU M, ZHANG Y, LIU Y. Chin. J. Chem., 2021, 39(8):2181-2187.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(23)
  • Abstract views(1949)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return