Citation: WU Jin-Dan,  CAO Ying-Zi,  CHEN Kai-Xin,  ZHA Yong-Chao,  LIU Hong-Shen,  ZHOU Ping,  LI Nan. Mannich Reaction Based Aggregation-induced Emission for Fluorescent Sensitive Detection of Formaldehyde[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 194-203. doi: 10.19756/j.issn.0253-3820.221482 shu

Mannich Reaction Based Aggregation-induced Emission for Fluorescent Sensitive Detection of Formaldehyde

  • Corresponding author: LI Nan, linanbie@jnu.edu.cn
  • Received Date: 28 September 2022
    Revised Date: 23 November 2022

    Fund Project: Formaldehyde

  • Formaldehyde is a kind of colorless and odorless carcinogen that can cause many diseases. It is very necessary to develope a simple and sensitive detection method for formaldehyde in environmental monitoring, toxicological assessment, clinical diagnosis and medical care. Herein, a new fluorescence detection method was developed based on the aggregation-induced emission (AIE) effect for aqueous formaldehyde. An AIE probe of tetra (4-hydroxyphenyl) ethylene (TPE-4OH) was synthesized, which could react with formaldehyde by Mannich reaction in the presence of 1,2,4,5-benzenetetramine tetrahydrochloride (BTA), causing an obvious enhancement of fluorescence of TPE-4OH. Due to the fluorescence enhancement of TPE-4OH related to the Mannich reaction and the concentration of formaldehyde, the detection of formaldehyde in the aqueous solution could be realized by measuring the fluorescence intensity of TPE-4OH. By optimizing the conditions of reactant concentration, solution pH value and reaction time, the linear range of detection of formaldehyde was from 1.0 μmol/L to 2000 μmol/L, and the detection limit was 1.0 μmol/L. The results showed that this method had the potential in sensing/diagnosis applications of formaldehyde.
  • 加载中
    1. [1]

      TONG Z, LUO W, WANG Y, YANG F, HAN Y, LI H, LUO H, DUAN B, XU T, MAOYING Q, TAN H, WANG J, ZHAO H, LIU F, WAN Y. PLoS One, 2010, 5(4):e10234.

    2. [2]

      ZHANG Y, YANG Y, HE X, YANG P, ZONG T, SUN P, SUN R C, YU T, JIANG Z. J. Cell Mol. Med., 2021, 25(12):5358-5371.

    3. [3]

      YUAN G, DING H, PENG L, ZHOU L, LIN Q. Food Chem., 2020, 331:127221.

    4. [4]

      ZHAO Y X, ZHU W W, WU Y Y, CHEN Y Y, DU F K, YAN J, TAN X C, WANG Q. Microchem. J., 2021, 160:105727.

    5. [5]

      TENG S, BEARD K, POURAHMAD J, MORIDANI M, EASSON E, POON R, O'BRIEN P J. Chem. Biol. Interact., 2001, 130-132:285-296.

    6. [6]

      MICHEL B W, LIPPERT A R, CHANG C J. J. Am. Chem. Soc., 2012, 134(38):15668-15671.

    7. [7]

      REINGRUBER H, PONTEL L B. Curr. Opin. Toxicol., 2018, 9:28-34.

    8. [8]

      TULPULE K, DRINGEN R. J. Neurochem., 2013, 127(1):7-21.

    9. [9]

      GAO P, JIANG H, CHEN W, CUI Z. Dyes Pigm., 2020, 179:108376.

    10. [10]

      SOMAN A, QIU Y, CHAN LI Q. J. Chromatogr. Sci., 2008, 46(6):461-465.

    11. [11]

      YEH T S, LIN T C, CHEN C C, WEN H M. J. Food Drug Anal., 2013, 21(2):190-197.

    12. [12]

      GANIE A S, BANO S, SULTANA S, SABIR S, KHAN M Z. Electroanalysis, 2021, 33(1):233-248.

    13. [13]

      EHSAN M A, REHMAN A. Anal. Methods, 2020, 12(32):4028-4036.

    14. [14]

      SUN X, ZHANG H, HAO S, ZHAI J, DONG S. ACS Sens., 2019, 4(10):2631-2637.

    15. [15]

      LI M W, SHEN A, LIANG Y Q, ZHEN H, HAO X H, LIU X L, SUN X C, YANG Y X. Anal. Methods, 2020, 12(29):3748-3755.

    16. [16]

      SHIN H S, LIM H H. Int. J. Food Sci. Tech., 2012, 47(2):350-356.

    17. [17]

      MEI J, LEUNG N L C, KWOK R T K, LAM J W Y, TANG B Z. Chem. Rev., 2015, 115(21):11718-11940.

    18. [18]

      FENG G, KWOK R T K, TANG B Z, LIU B. Appl. Phys. Rev., 2017, 4(2):021307.

    19. [19]

    20. [20]

      LIANG J, TANG B Z, LIU B. Chem. Soc. Rev., 2015, 44(10):2798-2811.

    21. [21]

      PAN J, MA J, LIU H, ZHANG Y, LU L. New J. Chem., 2021, 45(45):21151-21159.

    22. [22]

      LIOW S S, ZHOU H, SUGIARTO S, GUO S, CHALASANI M L S, VERMA N K, XU J, LOH X J. Biomacromolecules, 2017, 18(3):886-897.

    23. [23]

      LI Y, ZHANG Y, WANG M, WANG D, CHEN K, LIN P, GE Y, LIU W, WU J. J. Hazard. Mater., 2021, 415:125712.

    24. [24]

      WEN X, YAN L, FAN Z. New J. Chem., 2021, 45(18):8155-8165.

    25. [25]

      ZHAO X, JI C, MA L, WU Z, CHENG W, YIN M. ACS Sens., 2018, 3(10):2112-2117.

    26. [26]

      LI P, ZHANG D, ZHANG Y, LU W, WANG W, CHEN T. ACS Sens., 2018, 3(11):2394-2401.

    27. [27]

    28. [28]

      KLEINMAN E. Comp. Org. Synth., 1991, 2:893-951.

    29. [29]

      ZHAO W, LI C, LIU B, WANG X, LI P, WANG Y, WU C, YAO C, TANG T, LIU X, CUI D. Macromolecules, 2014, 47(16):5586-5594.

    30. [30]

      ZHANG X, MOHAMED M G, XIN Z, KUO S W. Polymer, 2020, 201:122552.

    31. [31]

    32. [32]

      HONG Y, LAM J W Y, TANG B Z. Chem. Commun., 2009, (29):4332-4353.

    33. [33]

      JOSHI N S, WHITAKER L R, FRANCIS M B. J. Am. Chem. Soc., 2004, 126(49):15942-15943.

    34. [34]

      FILHO J F A, LEMOS B C, DE SOUZA A S, PINHEIRO S, GRECO S J. Tetrahedron, 2017, 73(50):6977-7004.

    35. [35]

      LIN Q, FAN Y Q, GONG G F, MAO P P, WANG J, GUAN X W, LIU J, ZHANG Y M, YAO H, WEI T B. ACS Sustainable Chem. Eng., 2018, 6(7):8775-8781.

    36. [36]

      ZHANG S, WEN X, LONG M, XI J, HU J, TANG A. J. Alloys Compd., 2020, 829:154568.

    37. [37]

      ARSAWISET S, TEEPOO S. Anal. Chim. Acta, 2020, 1118:63-72.

    38. [38]

      LIU Q, ZENG X, TIAN Y, HOU X, WU L. Talanta, 2019, 202:274-278.

    39. [39]

      HAN S, WANG J, JIA S. Microchim. Acta, 2014, 181(1-2):147-153.

    40. [40]

      DING N, LI Z, HAO Y, YANG X. Food Chem., 2022, 384:132426.

    41. [41]

      XIN F, TIAN Y, JING J, ZHANG X. Anal. Methods, 2019, 11(23):2969-2975.

    42. [42]

      ZACHUT M, SHAPIRO F, SILANIKOVE N. Food Chem., 2016, 201:270-274.

  • 加载中
    1. [1]

      Pan Li Huguo Shen Cong Hua Jinjie Fang Xiangying Chi Quan Jiang Zichen Feng Ye Kang Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    4. [4]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    5. [5]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    6. [6]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    7. [7]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    8. [8]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    9. [9]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    10. [10]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    15. [15]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    16. [16]

      Yang LIUJin TONGShuyan YU . Co(Ⅱ) coordination polymers: Structural characterization and fluorescence sensing of Al3+ in aqueous. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2399-2408. doi: 10.11862/CJIC.20250114

    17. [17]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    18. [18]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    19. [19]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(28)
  • Abstract views(3954)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return