Citation: TAO Xin,  ZHANG Jun-Tong,  YANG Yun-Han,  YANG Ju,  SU Li-Jiao,  CHEN Yan,  YANG Ming-Kun,  YANG Li-Juan. Preparation, Characterization and Molecular Modeling Studies of Inclusion Complex of Vincamine With Water-Soluble Phosphate Salt Pillar[6]Arene[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 219-228. doi: 10.19756/j.issn.0253-3820.221469 shu

Preparation, Characterization and Molecular Modeling Studies of Inclusion Complex of Vincamine With Water-Soluble Phosphate Salt Pillar[6]Arene

  • Corresponding author: YANG Li-Juan, yangljyang@sina.com
  • Received Date: 22 September 2022
    Revised Date: 8 December 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21762051), the Program for Xingdian Talents (Jiaoxue Mingshi), the Program for Innovative Research Team (in science and technology) in University of Yunnan Province and the Postgraduate Fund (No. 2022SKY031).

  • A novel host-guest inclusion complex MAA/PP6A was constructed by the saturated solution method with water-soluble phosphate salt pillar[6]arene (PP6A) as the host and the natural medicine maackiain (MAA) as the guest. The preparation process of MAA/PP6A clathrate was screened by orthogonal test with the drug loading of clathrate as an index. The inclusion complex MAA/PP6A was characterized by fluorescence spectroscopy, scanning electron microscope (SEM), X-ray powder diffraction (XRD), and infrared spectroscopy (FT-IR). The inclusion mode of MAA and PP6A inclusion complex was studied by nuclear magnetic resonance spectroscopy (NMR), molecular simulation docking and semi-empirical molecular orbital methods. The results of orthogonal experiments showed that the optimal conditions for the preparation of the inclusion complex were as follows: the mass ratio of PP6A to MAA was 2:1, the volume ratio of ethanol to water was 1:1, and reaction at 50 ℃ for 8 h. Fluorescence spectroscopic titration experiment showed that the inclusion ratio between MAA and PP6A was 1:1 and there was a strong interaction between the host and the guest. The host-guest complex constant was calculated to be 2.458×104 L/mol by the non-linear least squares curve fitting method. Analytical test results showed that the inclusion complex was successfully prepared. The water solubility of MAA increased from 0.3463 to 6.123 mg/mL after the formation of the inclusion complex between MAA and PP6A, which effectively improved the water solubility of MAA. Semi-empirical molecular orbital method and molecular docking calculations indicated that there was no hydrogen bond formed between the host and the guest. MAA could enter the cavity of PP6A and formed a conformationally stable inclusion complex. PP6A was a good host for MAA, and the optimal mode was consistent with the NMR results.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      LEE H W, RYU H W, KANG M G, PARK D, OH S R, KIM H. Bioorg. Med. Chem. Lett., 2016, 26(19):4714-4719.

    5. [5]

      LIU Y H, ZENG W Z, MA C, WANG Z Y, WANG C, LI S B, HE W, ZHANG Q, XU J K, ZHOU C. J. Cell. Mol. Med., 2020, 24(21):12308-12317.

    6. [6]

    7. [7]

      ARATANECHEMUGE Y, HIBASAMI H, KATSUZAKI H, IMAI K, KOMIYA T. Oncol Rep., 2004, 12(6):1183.

    8. [8]

      ZENG Y T, JIANG J M, LAO H Y, GUO J W, LUN Y N, YANG M. Mol. Med. Rep., 2015, 11(3):2234-2240.

    9. [9]

    10. [10]

      MIZUGUCHI H, NARIAI Y, KATO S, NAKANO T, KANAYAMA T, KASHIWADA Y, NEMOTO H, KAWAZOE K, TAKAISHI Y, KITAMURA Y, TAKEDA N, FUKUI H. Pharmacol. Res. Perspect., 2015, 3(5):e00166.

    11. [11]

      PENG T, ZHAO F, CHEN X, JIANG G, WANG S. Biomed. Rep., 2016, 4(2):219-222.

    12. [12]

    13. [13]

    14. [14]

      LUO T, HUANG J, LIU J. Chem. Res. Chin. Univ., 2020, 36(6):1091-1096.

    15. [15]

      XIE J, ZENG Z, TAO Z, ZHANG Q. Chem. Res. Chin. Univ., 2020, 36(5):804-809.

    16. [16]

      JI X, LI Y, WANG H, ZHAO R, TANG G, HUANG F. Polym. Chem., 2015, 6(28):5021-5025.

    17. [17]

      OGOSHI T, KANAI S, FUJINAMI S, YAMAGISHI T, NAKAMOTO Y. J. Am. Chem. Soc., 2008, 130(15):5022-5023.

    18. [18]

      XUE M, YANG Y, CHI X, ZHANG Z, HUANG F. Acc. Chem. Res., 2012, 45(8):1294-1308.

    19. [19]

      DUAN Q, CAO Y, LI Y, HU X, XIAO T, LIN C, PAN Y, WANG L. J. Am. Chem. Soc., 2013, 135(28):10542-10549.

    20. [20]

      PAN S, NI M, MU B, LI Q, HU X Y, LIN C, CHEN D, WANG L. Adv. Funct. Mater., 2015, 25(23):3571-3580.

    21. [21]

      HU X Y, LIU X, ZHANG W, QIN S, YAO C, LI Y, CAO D, PENG L, WANG L. Chem. Mater., 2016, 28(11):3778-3788.

    22. [22]

    23. [23]

    24. [24]

      WHEATE N J, DICKSON K A, KIM R R, NEMATOLLAHI A, MACQUART R B, KAYSER V, YU G, CHURCH W B, MARSH D J. J. Pharm. Sci., 2016, 105(12):3615-3625.

    25. [25]

      ZHOU J Y, XU H, TONG Z Z, YANG Y H, JIANG G H. Mater. Sci. Eng., 2018, 89:237-244.

    26. [26]

      LIU Y, CHEN G S, CHEN Y, LIN J. Bioorg. Med. Chem., 2005, 13(12):4037-4042.

    27. [27]

      ŘEZÁČ J, HOBZA P. J. Chem. Theor. Comput., 2012, 8(1):141-151.

    28. [28]

      MOPAC2016, JAMES J P, Stewart. Stewart Computation Chemistry. Colorado Springs, Co, USA. 2016. HTTP//OpenMOPAC.net.

    29. [29]

      MORRIS G M, HUEY R, LINDSTROM W, SANNER M F, BELEW R K, GOODSELL D S, OLSON A J. J. Comput. Chem., 2009, 30(16):2785-2791.

    30. [30]

    31. [31]

      YANG B, LIN J, CHEN Y, LIU Y. Bioorg. Med. Chem., 2009, 17(17):6311-6317.

    32. [32]

    33. [33]

      ROY N, BOMZAN P, NATH ROY M. Chem. Phys. Lett., 2020, 748:137372.

    34. [34]

    35. [35]

      KŘÍŽ K, ŘEZÁČ J. J. Chem. Inf. Model., 2020, 60(3):1453-1460.

    36. [36]

      MONTASSIER P, DUCHÊNE D, POELMAN M C. Int. J. Pharm., 1997, 153(2):199-209.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    17. [17]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    18. [18]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(11)
  • Abstract views(3047)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return