Citation: ZHANG Ze-Kun,  JING Xiao-Sheng,  XU Hao,  LI Zhao-Chen,  YAN Wei. Advances in Design and Reaction Mechanism of Copper-based Catalysts for Electrocatalytic Carbon Dioxide Reduction[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 316-330. doi: 10.19756/j.issn.0253-3820.221456 shu

Advances in Design and Reaction Mechanism of Copper-based Catalysts for Electrocatalytic Carbon Dioxide Reduction

  • Corresponding author: XU Hao, xuhao@xjtu.edu.cn
  • Received Date: 15 September 2022
    Revised Date: 8 December 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 52270078), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2021JM-012), the Welfare Technology Research Plan of Zhejiang Province (No. LZY21E080003) and the Fundamental Research Funds for the Central Universities (No. xjh012020037).

  • Converting carbon dioxide (CO2) to high-energy chemicals through electrocatalytic CO2 reduction reaction (CO2RR) is a powerful way to solve the greenhouse effect and realize the anthropogenic carbon cycle. Compared with other metal catalysts, copper (Cu)-based catalysts have attracted much attention due to the ability to generate multi-carbon products. However, it has poor selectivity for the products. Hence, efforts have been made in recent years to investigate the mechanism and influencing factors of C—C coupling in the reaction process of Cu-based catalysts, and to carry out targeted structural design and experimental synthesis of Cu-based catalysts. This paper first summarized the basic principles of electrocatalytic CO2RR. Then, the five key factors (electrocatalytic reactor, pH, pressure, temperature, CO2 flow rate and concentration) affecting electrocatalytic CO2RR were summarized. Next, related strategies (alloying, nanostructure modification, heteroatom doping, hydrophilic/hydrophobic and Single atom catalysts) for modification of Cu-based catalysts were reviewed. Finally, the current opportunities and challenges for the preparation of Cu-based catalysts for electrocatalytic CO2RR were prospected, in order to provide valuable insights and ideas for future research in related fields.
  • 加载中
    1. [1]

      SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Science, 2017, 355(6321):eaad4998.

    2. [2]

    3. [3]

      BENSON E E, KUBIAK C P, SATHRUM A J, SMIEJA J M. Chem. Soc. Rev., 2009, 38(1):89-99.

    4. [4]

      SINGH S, NOORI M T, VERMA N. Electrochim. Acta, 2020, 338:135887.

    5. [5]

      HE W, WU X, LI Y, XIONG J, TANG Z, WEI Y, ZHAO Z, ZHANG X, LIU J. Chin. Chem. Lett., 2020, 31(10):2774-2778.

    6. [6]

      XIE F, CHEN R, ZHU X, LIAO Q, YE D, ZHANG B, YU Y, LI J. J. CO2 Util., 2019, 32:31-36.

    7. [7]

      KUMAGAI H, NISHIKAWA T, KOIZUMI H, YATSU T, SAHARA G, YAMAZAKI Y, TAMAKI Y, ISHITANI O. Chem. Sci., 2019, 10(6):1597-1606.

    8. [8]

      DING P, ZHAO H, LI T, LUO Y, FAN G, CHEN G, GAO S, SHI X, LU S, SUN X. J. Mater. Chem. A, 2020, 8(42):21947-21960.

    9. [9]

      BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, GÖTTLE A J, CALLE-VALLEJO F, KOPER M T M. Nat. Energy, 2019, 4(9):732-745.

    10. [10]

      NITOPI S, BERTHEUSSEN E, SCOTT S B, LIU X, ENGSTFELD A K, HORCH S, SEGER B, STEPHENS I E L, CHAN K, HAHN C, NØRSKOV J K, JARAMILLO T F, CHORKENDORFF I. Chem. Rev., 2019, 119(12):7610-7672.

    11. [11]

      LU Q, ROSEN J, ZHOU Y, HUTCHINGS G S, KIMMEL Y C, CHEN J G, JIAO F. Nat. Commun., 2014, 5:3242.

    12. [12]

      ZHANG B, ZHANG J. J. Energy Chem., 2017, 26(6):1050-1066.

    13. [13]

      HE J, JOHNSON N J J, HUANG A, BERLINGUETTE C P. ChemSusChem, 2018, 11(1):48-57.

    14. [14]

      ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. Chem. Soc. Rev., 2019, 48(12):3193-3228.

    15. [15]

      XIE S, MA W, WU X, ZHANG H, ZHANG Q, WANG Y, WANG Y. Energy Environ. Sci., 2021, 14(1):37-89.

    16. [16]

      JOUNY M, HUTCHINGS G S, JIAO F. Nat. Catal., 2019, 2(12):1062-1070.

    17. [17]

      MA W, HE X, WANG W, XIE S, ZHANG Q, WANG Y. Chem. Soc. Rev., 2021, 50(23):12897-12914.

    18. [18]

      MA W, XIE S, LIU T, FAN Q, YE J, SUN F, JIANG Z, ZHANG Q, CHENG J, WANG Y. Nat. Catal., 2020, 3(6):478-487.

    19. [19]

      OU L, HE Z. Surf. Sci., 2021, 705:121782.

    20. [20]

      CALLE-VALLEJO F, KOPER M T M. Angew. Chem. Int. Ed., 2013, 52(28):7282-7285.

    21. [21]

      CHENG T, XIAO H, GODDARD III W A. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(8):1795-1800.

    22. [22]

      HE J, DETTELBACH K E, SALVATORE D A, LI T, BERLINGUETTE C P. Angew. Chem. Int. Ed., 2017, 56(22):6068-6072.

    23. [23]

      DUFEK E J, LISTER T E, MCILWAIN M E. J. Appl. Electrochem., 2011, 41(6):623-631.

    24. [24]

    25. [25]

    26. [26]

      FAN L, XIA C, YANG F, WANG J, WANG H, LU Y. Sci. Adv., 2020, 6(8):eaay3111.

    27. [27]

    28. [28]

      ZHANG X, LI J, LI Y Y, JUNG Y, KUANG Y, ZHU G, LIANG Y, DAI H. J. Am. Chem. Soc., 2021, 143(8):3245-3255.

    29. [29]

      YIN Z, PENG H, WEI X, ZHOU H, GONG J, HUAI M, XIAO L, WANG G, LU J, ZHUANG L. Energy Environ. Sci., 2019, 12(8):2455-2462.

    30. [30]

      WEI P, LI H, LIN L, GAO D, ZHANG X, GONG H, QING G, CAI R, WANG G, BAO X. Sci. China Chem., 2020, 63(12):1711-1715.

    31. [31]

      HAAS T, KRAUSE R, WEBER R, DEMLER M, SCHMID G. Nat. Catal., 2018, 1(1):32-39.

    32. [32]

      GAO D F, WEI P F, LI H F, LIN L, WANG G X, BAO X H. Acta Phys.-Chim. Sin., 2021, 37(5):2009021.

    33. [33]

      SONG Y, ZHOU Z, ZHANG X, ZHOU Y, GONG H, LV H, LIU Q, WANG G, BAO X. J. Mater. Chem. A, 2018, 6(28):13661-13667.

    34. [34]

      SONG Y, ZHANG X, XIE K, WANG G, BAO X. Adv. Mater., 2019, 31(50):1902033.

    35. [35]

      WANG G, CHEN J, DING Y, CAI P, YI L, LI Y, TU C, HOU Y, WEN Z, DAI L. Chem. Soc. Rev., 2021, 50(8):4993-5061.

    36. [36]

      VARELA A S, KROSCHEL M, LEONARD N D, JU W, STEINBERG J, BAGGER A, ROSSMEISL J, STRASSER P. ACS Energy Lett., 2018, 3(4):812-817.

    37. [37]

      NARAYANARU S, CHINNAIAH J, PHANI K L, SCHOLZ F. Electrochim. Acta, 2018, 264:269-274.

    38. [38]

      ZHU W, CHEN Z, PAN Y, DAI R Y, WU Y, ZHUANG Z B, WANG D S, PENG Q, CHEN C, LI Y D. Adv. Mater., 2019, 31(38):e1800426.

    39. [39]

      SCHOUTEN K J P, PÉREZ GALLENT E, KOPER M T M. J. Electroanal. Chem., 2014, 716:53-57.

    40. [40]

      ZHENG Y, VASILEFF A, ZHOU X, JIAO Y, JARONIEC M, QIAO S Z. J. Am. Chem. Soc., 2019, 141(19):7646-7659.

    41. [41]

      MURATA A, HORI Y. Bull. Chem. Soc. Jpn., 1991, 64(1):123-127.

    42. [42]

      AKHADE S A, MCCRUM I T, JANIK M J. J. Electrochem. Soc., 2016, 163(6):F477-F484.

    43. [43]

      DUNWELL M, LU Q, HEYES J M, ROSEN J, CHEN J G, YAN Y, JIAO F, XU B. J. Am. Chem. Soc., 2017, 139(10):3774-3783.

    44. [44]

      WUTTIG A, YOON Y, RYU J, SURENDRANATH Y. J. Am. Chem. Soc., 2017, 139(47):17109-17113.

    45. [45]

      RAMDIN M, MORRISON A R T, DE GROEN M, VAN HAPEREN R, DE KLER R, VAN DEN BROEKE L J P, TRUSLER J P M, DE JONG W, VLUGT T J H. Ind. Eng. Chem. Res., 2019, 58(5):1834-1847.

    46. [46]

      LI J, KUANG Y, MENG Y, TIAN X, HUNG W H, ZHANG X, LI A, XU M, ZHOU W, KU C S, CHIANG C Y, ZHU G, GUO J, SUN X, DAI H. J. Am. Chem. Soc., 2020, 142(16):7276-7282.

    47. [47]

      KUDO A, NAKAGAWA S, TSUNETO A, SAKATA T. J. Electrochem. Soc., 1993, 140(6):1541-1545.

    48. [48]

      KAS R, KORTLEVER R, YıLMAZ H, KOPER M T M, MUL G. ChemElectroChem, 2015, 2(3):354-358.

    49. [49]

      KIBRIA M G, EDWARDS J P, GABARDO C M, DINH C T, SEIFITOKALDANI A, SINTON D, SARGENT E H. Adv. Mater., 2019, 31(31):1807166.

    50. [50]

      VARELA A S, KROSCHEL M, REIER T, STRASSER P. Catal. Today, 2016, 260:8-13.

    51. [51]

      AHN S T, ABU-BAKER I, PALMORE G T R. Catal. Today, 2017, 288:24-29.

    52. [52]

      ZHANG J, LUO W, ZÜTTEL A. J. Catal., 2020, 385:140-145.

    53. [53]

      KIM H Y, CHOI I, AHN S H, HWANG S J, YOO S J, HAN J, KIM J, PARK H, JANG J H, KIM S K. Int. J. Hydrogen Energy, 2014, 39(29):16506-16512.

    54. [54]

      LEI T, ZHANG X, JUNG J, CAI Y, HOU X, ZHANG Q, QIAO J. Catal. Today, 2018, 318:32-38.

    55. [55]

      CHEN Y, KAN M, YAN S, ZHANG J, LIU K, YAN Y, GUAN A, LV X, QIAN L, ZHENG G. Chin. J. Catal., 2022, 43(7):1703-1709.

    56. [56]

      KIM D, CHOI W, LEE H W, LEE S Y, CHOI Y, LEE D K, KIM W, NA J, LEE U, HWANG Y J, WON D H. ACS Energy Lett., 2021, 6(10):3488-3495.

    57. [57]

      KHOO H H, HALIM I, HANDOKO A D. J. CO2 Util., 2020, 41:101229.

    58. [58]

      MOSALI V S S, ZHANG X, ZHANG Y, GENGENBACH T, GUO S X, PUXTY G, HORNE M D, BOND A M, ZHANG J. ACS Sustainable Chem. Eng., 2019, 7(24):19453-19462.

    59. [59]

      XIE C, NIU Z, KIM D, LI M, YANG P. Chem. Rev., 2020, 120(2):1184-1249.

    60. [60]

      FU X, ZHU A, CHEN X, ZHANG S, WANG M, YUAN M. Chem. Res. Chin. Univ., 2021, 37(6):1328-1333.

    61. [61]

      WANG J, LI Y, ZHAO J, XIONG Z, ZHAO Y, ZHANG J. Catal. Sci. Technol., 2022, 12(11):3454-3463.

    62. [62]

      YU Y, DONG X, CHEN P, GENG Q, WANG H, LI J, ZHOU Y, DONG F. ACS Nano, 2021, 15(9):14453-14464.

    63. [63]

      CHEN H, ZHOU M, WANG T, LI F, ZHANG Y X. J. Mater. Chem. A, 2016, 4(28):10786-10793.

    64. [64]

      ZHANG X D, LIU K, FU J W, LI H M, PAN H, HU J H, LIU M. Front. Phys., 2021, 16(6):63500.

    65. [65]

      SU X, SUN Y, JIN L, ZHANG L, YANG Y, KERNS P, LIU B, LI S, HE J. Appl. Catal., B, 2020, 269:118800.

    66. [66]

      ZHI X, JIAO Y, ZHENG Y, VASILEFF A, QIAO S Z. Nano Energy, 2020, 71:104601.

    67. [67]

      LI Q, FU J, ZHU W, CHEN Z, SHEN B, WU L, XI Z, WANG T, LU G, ZHU J, SUN S. J. Am. Chem. Soc., 2017, 139(12):4290-4293.

    68. [68]

      JIA F, YU X, ZHANG L. J. Power Sources, 2014, 252:85-89.

    69. [69]

      GUO X, ZHANG Y, DENG C, LI X, XUE Y, YAN Y M, SUN K. Chem. Commun., 2015, 51(7):1345-1348.

    70. [70]

      MA S, SADAKIYO M, HEIMA M, LUO R, HAASCH R T, GOLD J I, YAMAUCHI M, KENIS P J A. J. Am. Chem. Soc., 2017, 139(1):47-50.

    71. [71]

      KYRIAKOU G, BOUCHER M B, JEWELL A D, LEWIS E A, LAWTON T J, BABER A E, TIERNEY H L, FLYTZANISTEPHANOPOULOS M, SYKES E C H. Science, 2012, 335(6073):1209-1212.

    72. [72]

      KIM C, DIONIGI F, BEERMANN V, WANG X, MÖLLER T, STRASSER P. Adv. Mater., 2019, 31(31):1805617.

    73. [73]

      YU J, LIU S, MU X, YANG G, LUO X, LESTER E, WU T. Chem. Eng. J., 2021, 419:129656.

    74. [74]

      LOIUDICE A, LOBACCARO P, KAMALI E A, THAO T, HUANG B H, AGER J W, BUONSANTI R. Angew. Chem. Int. Ed., 2016, 55(19):5789-5792.

    75. [75]

      BERSANI M, GUPTA K, MISHRA A K, LANZA R, TAYLOR S F R, ISLAM H U, HOLLINGSWORTH N, HARDACRE C, DE LEEUW N H, DARR J A. ACS Catal., 2016, 6(9):5823-5833.

    76. [76]

      RESKE R, MISTRY H, BEHAFARID F, ROLDAN CUENYA B, STRASSER P. J. Am. Chem. Soc., 2014, 136(19):6978-6986.

    77. [77]

      LAI X, HALPERT J E, WANG D. Energy Environ. Sci., 2012, 5(2):5604-5618.

    78. [78]

      KIM J, CHOI W, PARK J W, KIM C, KIM M, SONG H. J. Am. Chem. Soc., 2019, 141(17):6986-6994.

    79. [79]

      ZHUANG T T, PANG Y, LIANG Z Q, WANG Z, LI Y, TAN C S, LI J, DINH C T, DE LUNA P, HSIEH P L, BURDYNY T, LI H H, LIU M, WANG Y, LI F, PROPPE A, JOHNSTON A, NAM D H, WU Z Y, ZHENG Y R, IP A H, TAN H, CHEN L J, YU S H, KELLEY S O, SINTON D, SARGENT E H. Nat. Catal., 2018, 1(12):946-951.

    80. [80]

      ZHONG D, ZHAO Z, ZHAO Q, CHENG D, LIU B, ZHANG G, DENG W, DONG H, ZHANG L, LI J, LI J, GONG J. Angew. Chem. Int. Ed., 2021, 60(9):4879-4885.

    81. [81]

      FU Y, XIE Q, WU L, LUO J. Chin. J. Catal., 2022, 43(4):1066-1073.

    82. [82]

      ZHANG H, HE C, HAN S, DU Z, WANG L, YUN Q, CAO W, ZHANG B, TIAN Y H, LU Q. Chin. Chem. Lett., 2022, 33(8):3641-3649.

    83. [83]

      HORI Y, WAKEBE H, TSUKAMOTO T, KOGA O. Surf. Sci., 1995, 335:258-263.

    84. [84]

      HORI Y, TAKAHASHI I, KOGA O, HOSHI N. J. Phys. Chem. B, 2002, 106(1):15-17.

    85. [85]

      AJMAL S, YANG Y, TAHIR M A, LI K, BACHA A U R, NABI I, LIU Y, WANG T, ZHANG L. Catal. Sci. Technol., 2020, 10(14):4562-4570.

    86. [86]

      JIANG Y, ZHONG D Z, WANG L, LI J Y, HAO G Y, LI J P, ZHAO Q. Chem-Asian J., 2022, 17:e202200380.

    87. [87]

      JIANG K, HUANG Y, ZENG G, TOMA F M, GODDARD III W A, BELL A T. ACS Energy Lett., 2020, 5(4):1206-1214.

    88. [88]

      QUAN W, LIN Y, LUO Y, HUANG Y. Adv. Sci., 2021, 8(23):2101597.

    89. [89]

      LIU C, GONG J, GAO Z, XIAO L, WANG G, LU J, ZHUANG L. Sci. China Chem., 2021, 64(10):1660-1678.

    90. [90]

      LI H, SHEN Y Y, DU H N, LI J, ZHANG H X, XU C X. Chem. Phys., 2021, 540:111012.

    91. [91]

      XIN Z, YUAN Z, LIU J, WANG X, SHEN K, CHEN Y, LAN Y Q. Chin. Chem. Lett., 2023, 34(4):107458.

    92. [92]

      OU L, LONG W, HUANG J, CHEN Y, JIN J. RSC Adv., 2017, 7(20):11938-11950.

    93. [93]

      SHINAGAWA T, LARRAZÁBAL G O, MARTÍN A J, KRUMEICH F, PÉREZ-RAMÍREZ J. ACS Catal., 2018, 8(2):837-844.

    94. [94]

      EILERT A, CAVALCA F, ROBERTS F S, OSTERWALDER J, LIU C, FAVARO M, CRUMLIN E J, OGASAWARA H, FRIEBEL D, PETTERSSON L G M, NILSSON A. J. Phys. Chem. Lett., 2017, 8(1):285-290.

    95. [95]

      ZHOU Y, CHE F, LIU M, ZOU C, LIANG Z, DE LUNA P, YUAN H, LI J, WANG Z, XIE H, LI H, CHEN P, BLADT E, QUINTERO-BERMUDEZ R, SHAM T K, BALS S, HOFKENS J, SINTON D, CHEN G, SARGENT E H. Nat. Chem., 2018, 10(9):974-980.

    96. [96]

      CHEN C, SUN X, LU L, YANG D, MA J, ZHU Q, QIAN Q, HAN B. Green Chem., 2018, 20(20):4579-4583.

    97. [97]

      KONG X, WANG C, ZHENG H, GENG Z, BAO J, ZENG J. Sci. China Chem., 2021, 64(7):1096-1102.

    98. [98]

      LIANG Z Q, ZHUANG T T, SEIFITOKALDANI A, LI J, HUANG C W, TAN C S, LI Y, DE LUNA P, DINH C T, HU Y, XIAO Q, HSIEH P L, WANG Y, LI F, QUINTERO-BERMUDEZ R, ZHOU Y, CHEN P, PANG Y, LO S C, CHEN L J, TAN H, XU Z, ZHAO S, SINTON D, SARGENT E H. Nat. Commun., 2018, 9(1):3828.

    99. [99]

      SHAO P, CI S, YI L, CAI P, HUANG P, CAO C, WEN Z. ChemElectroChem, 2017, 4(10):2593-2598.

    100. [100]

      BANERJEE S, HAN X, THOI V S. ACS Catal., 2019, 9(6):5631-5637.

    101. [101]

      WAKERLEY D, LAMAISON S, OZANAM F, MENGUY N, MERCIER D, MARCUS P, FONTECAVE M, MOUGEL V. Nat. Mater., 2019, 18(8):1222-1227.

    102. [102]

      LIANG H Q, ZHAO S, HU X M, CECCATO M, SKRYDSTRUP T, DAASBJERG K. ACS Catal., 2021, 11(2):958-966.

    103. [103]

      XU H, REBOLLAR D, HE H, CHONG L, LIU Y, LIU C, SUN C J, LI T, MUNTEAN J V, WINANS R E, LIU D J, XU T. Nat. Energy, 2020, 5(8):623-632.

    104. [104]

      KARAPINAR D, HUAN N T, RANJBAR SAHRAIE N, LI J, WAKERLEY D, TOUATI N, ZANNA S, TAVERNA D, GALVÃO TIZEI L H, ZITOLO A, JAOUEN F, MOUGEL V, FONTECAVE M. Angew. Chem. Int. Ed., 2019, 58(42):15098-15103.

    105. [105]

      WENG Z, WU Y, WANG M, JIANG J, YANG K, HUO S, WANG X F, MA Q, BRUDVIG G W, BATISTA V S, LIANG Y, FENG Z, WANG H. Nat. Commun., 2018, 9(1):415.

    106. [106]

      WANG Y, CHEN Z, HAN P, DU Y, GU Z, XU X, ZHENG G. ACS Catal., 2018, 8(8):7113-7119.

    107. [107]

      LIU L Z, LI M T, CHEN F, HUANG H W. Small Struct., 2022:2200188.

  • 加载中
    1. [1]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    4. [4]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    17. [17]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(98)
  • Abstract views(2797)
  • HTML views(543)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return