Citation: ZHAI Tong-Tong,  LI Yun-Hui,  ZHU Jian-Wei,  LI Jing,  WANG Er-Kang. Progress in Electrochemiluminescence of Halide Perovskites Nanocrystals[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 642-651. doi: 10.19756/j.issn.0253-3820.221439 shu

Progress in Electrochemiluminescence of Halide Perovskites Nanocrystals

  • Corresponding author: LI Yun-Hui,  ZHU Jian-Wei,  LI Jing, 
  • Received Date: 1 September 2022
    Revised Date: 30 December 2022

    Fund Project: Supported by the National Key R&D Program of China (Nos. 2019YFA0709202, 2020YFB2009004), the Youth Innovation Promotion Association, CAS (No. 202055) and the Top Talent Plan in Jinan (One Project, One Discussion).

  • Halide perovskites nanocrystals (PeNCs) have attracted much attention in the field of photovoltaics and optoelectronic due to their excellent optical properties such as good conductivity and adjustable band gap. In recent years, many scholars have evaluated the possibility of PeNCs in the field of electrochemiluminescence (ECL) and found that PeNCs produce higher color purity ECL than other classical quantum dots based on annihilation and co-reaction mechanism, but with the poor stability of PeNCs. Researchers have achieved more satisfactory ECL efficiency in organic and aqueous medium with different strategies such as surface engineering, structural modification and interfacial manipulation with PeNCs. In this review, recent advances of PeNCs related ECL, including the ECL mechanisms, methods to improve the stability and ECL efficiency and the applications in ECL were summarized, and the future prospect was also anticipated.
  • 加载中
    1. [1]

      MIAO W. Chem. Rev., 2008, 108(7):2506-2553.

    2. [2]

      YANG M, HUANG J, FAN J, DU J, PU K, PENG X. Chem. Soc. Rev., 2020, 49(19):6800-6815.

    3. [3]

      QI L, YUAN F, XU G. Sci. Sin. Chim., 2018, 48(8):914-925.

    4. [4]

      XU J, HUANG P, QIN Y, JIANG D, CHEN H. Anal. Chem., 2016, 88(9):4609-4612.

    5. [5]

      HERCULES D M. Science, 1964, 145(3634):808-809.

    6. [6]

      WU R, ZHOU K, YUE C Y, WEI J, PAN Y. Prog. Mater. Sci., 2015, 72:1-60.

    7. [7]

      DING Z, QUINN B M, HARAM S K, PELL L E, KORGEL B A, BARD A J. Science, 2002, 296(5571):1293-1297.

    8. [8]

      QUAN L N, GARCÍA DE ARQUER F P, SABATINI R P, SARGENT E H. Adv. Mater., 2018, 30(45):1801996.

    9. [9]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. J. Am. Chem. Soc., 2009, 131(17):6050-6051.

    10. [10]

      MIN H, LEE D Y, KIM J, KIM G, LEE K S, KIM J, PAIK M J, KIM Y K, KIM K S, KIM M G, SHIN T J, IL SEOK S. Nature, 2021, 598(7881):444-450.

    11. [11]

      BURSCHKA J, PELLET N, MOON S J, HUMPHRY-BAKER R, GAO P, NAZEERUDDIN M K, GRÄTZEL M. Nature, 2013, 499(7458):316-319.

    12. [12]

      ZHOU H, CHEN Q, LI G, LUO S, SONG T, DUAN H S, HONG Z, YOU J, LIU Y, YANG Y. Science, 2014, 345(6196):542-546.

    13. [13]

      HUANG H, SUSHA A S, KERSHAW S V, HUNG T F, ROGACH A L. Adv. Sci., 2015, 2(9):1500194.

    14. [14]

      BHAUMIK S, VELDHUIS S A, NG Y F, LI M, MUDULI S K, SUM T C, DAMODARAN B, MHAISALKAR S, MATHEWS N. Chem. Commun., 2016, 52(44):7118-7121.

    15. [15]

      HUANG Y, FANG M, ZOU G, ZHANG B, WANG H. Nanoscale, 2016, 8(44):18734-18739.

    16. [16]

      LI C H, LU X G, DING W Z, FENG L M, GAO Y H, GUO Z M. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater., 2008, 64(6):702-707.

    17. [17]

      GREEN M A, HO-BAILLIE A, SNAITH H J. Nat. Photonics, 2014, 8(7):506-514.

    18. [18]

      TANAKA H, OKU T, UEOKA N. Jpn. J. Appl. Phys., 2018, 57(8S3):08RE12.

    19. [19]

      ZHANG X, LIU H, WANG W, ZHANG J, XU B, KAREN K L, ZHENG Y, LIU S, CHEN S, WANG K, SUN X W. Adv. Mater., 2017, 29(18):1606405.

    20. [20]

      PROTESESCU L, YAKUNIN S, BODNARCHUK M I, KRIEG F, CAPUTO R, HENDON C H, YANG R X, WALSH A, KOVALENKO M V. Nano Lett., 2015, 15(6):3692-3696.

    21. [21]

      LI X, WU Y, ZHANG S, CAI B, GU Y, SONG J, ZENG H. Adv. Funct. Mater., 2016, 26(15):2435-2445.

    22. [22]

      LI J, XU L, WANG T, SONG J, CHEN J, XUE J, DONG Y, CAI B, SHAN Q, HAN B, ZENG H. Adv. Mater., 2017, 29(5):1603885.

    23. [23]

      TAN X, ZHANG B, ZOU G. J. Am. Chem. Soc., 2017, 139(25):8772-8776.

    24. [24]

      WUSIMANJIANG Y, YADAV J, ARAU V, STEEN A E, HAMMER N I, PAN S. J. Anal. Test., 2019, 3(2):125-133.

    25. [25]

      CHEN L, KANG Q, LI Z, ZHANG B, ZOU G, SHEN D. New J. Chem., 2020, 44(8):3323-3329.

    26. [26]

      CAO Y, ZHANG Z, LI L, ZHANG J R, ZHU J J. Anal. Chem., 2019, 91(13):8607-8614.

    27. [27]

      JIA J, FU K, HOU S, ZHANG B, FU L, HSU H Y, ZOU G. J. Phys. Chem. C, 2019, 123(49):29916-29921.

    28. [28]

      FU L, FU K, HSU H Y, GAO X, ZOU G. J. Electroanal. Chem., 2020, 876:114546.

    29. [29]

      CAO Y, ZHU W, LI L, ZHANG Z, CHEN Z, LIN Y, ZHU J J. Nanoscale, 2020, 12(13):7321-7329.

    30. [30]

      MALGRAS V, TOMINAKA S, RYAN J W, HENZIE J, TAKEI T, OHARA K, YAMAUCHI Y. J. Am. Chem. Soc., 2016, 138(42):13874-13881.

    31. [31]

      DIRIN D N, PROTESESCU L, TRUMMER D, KOCHETYGOV I V, YAKUNIN S, KRUMEICH F, STADIE N P, KOVALENKO M V. Nano Lett., 2016, 16(9):5866-5874.

    32. [32]

      LEIJTENS T, LAUBER B, EPERON G E, STRANKS S D, SNAITH H J. J. Phys. Chem. Lett., 2014, 5(7):1096-1102.

    33. [33]

      GUARNERA S, ABATE A, ZHANG W, FOSTER J M, RICHARDSON G, PETROZZA A, SNAITH H J. J. Phys. Chem. Lett., 2015, 6(3):432-437.

    34. [34]

      SUN C, ZHANG Y, RUAN C, YIN C, WANG X, WANG Y, YU W W. Adv. Mater., 2016, 28(45):10088-10094.

    35. [35]

      LI G, RIVAROLA F W R, DAVIS N J L K, BAI S, JELLICOE T C, DE LA PEÑA F, HOU S, DUCATI C, GAO F, FRIEND R H, GREENHAM N C, TAN Z K. Adv. Mater., 2016, 28(18):3528-3534.

    36. [36]

      WEI Y, DENG X R, XIE Z X, CAI X C, LIANG S S, MA P A, HOU Z Y, CHENG Z Y, LIN J. Adv. Funct. Mater., 2017, 27(39):170353.

    37. [37]

      WANG Y, HE J, CHEN H, CHEN J, ZHU R, MA P, TOWERS A, LIN Y, GESQUIERE A J, WU S T, DONG Y J. Adv. Mater., 2016, 28(48):10710-10717.

    38. [38]

      TSAI P C, CHEN J Y, ERCAN E, CHUEH C C, TUNG S H, CHEN W C. Small, 2018, 14(22):1704379.

    39. [39]

      DU K, HE L, SONG S, FENG J, LI Y, ZHANG M, LI H, LI C, ZHANG H. Adv. Funct. Mater., 2021, 31(36):2103275.

    40. [40]

      HAO N, LU J, DAI Z, QIAN J, ZHANG J, GUO Y, WANG K. Electrochem. Commun., 2019, 108:106559.

    41. [41]

      FOSDICK S E, BERGLUND S P, MULLINS C B, CROOKS R M. Anal. Chem., 2013, 85(4):2493-2499.

    42. [42]

      LI L, ZHANG Z, CHEN Y, XU Q, ZHANG J, CHEN Z, CHEN Y, ZHU J. Adv. Funct. Mater., 2019, 29(32):1902533.

    43. [43]

      LI Z, KANG Q, CHEN L, ZHANG B, ZOU G, SHEN D. Electrochim. Acta, 2020, 330:135332.

    44. [44]

      CAI Z, LI F, XU W, XIA S, ZENG J, HE S, CHEN X. Nano Res., 2018, 11(3):1447-1455.

    45. [45]

      XUE J, ZHANG Z, ZHENG F, XU Q, XU J, ZOU G, LI L, ZHU J J. Anal. Chem., 2017, 89(16):8212-8216.

    46. [46]

      HUANG Y, LONG X, SHEN D, ZOU G, ZHANG B, WANG H. Inorg. Chem., 2017, 56(17):10135-10138.

    47. [47]

      WANG Y, CHEN T, HUANG C, WANG Y, WU J, SUN B. J. Electroanal. Chem., 2020, 867:114181.

    48. [48]

      WANG X, YU L, KANG Q, CHEN L, JIN Y, ZOU G, SHEN D. Electrochim. Acta, 2020, 360:136992.

    49. [49]

      LIN L, QIU L, LI F, YOU C, ZHU Y, YAO Q, ZENG Y, WANG Y, LI J, CHEN X. ACS Appl. Nano Mater., 2021, 4(9):8823-8833.

    50. [50]

      PAN Q F, JIAO H F, LIU H, YOU J J, SUN A L, ZHANG Z M, SHI X Z. Sci. Total Environ., 2022, 843:156925.

    51. [51]

      ZHANG R R, GAN X T, XU J J, PAN Q F, LIU H, SUN A L, SHI X Z, ZHANG Z M. Food Chem., 2022, 370:131353.

    52. [52]

      WEI J, CHEN L, CAI X, LAI W, CHEN X, CAI Z. Biosens. Bioelectron., 2022, 216:114664.

    53. [53]

      CAO Y, ZHU W, WEI H, MA C, LIN Y, ZHU J J. Anal. Chem., 2020, 92(5):4123-4130.

    54. [54]

      CAO Y, ZHOU Y, LIN Y, ZHU J J. Anal. Chem., 2021, 93(3):1818-1825.

  • 加载中
    1. [1]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    2. [2]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    9. [9]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

Metrics
  • PDF Downloads(13)
  • Abstract views(1719)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return