Citation:
LI Yu-Yan, ZHANG Hong-Yan, LIU Wen-Dong, SHAO Ming-Zheng, ZHANG Rui-Zhong, ZHANG Li-Bing. Activated DNA Nanoprobes for Biosensing and Precision Imaging of MicroRNA in Living Cells[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 811-820.
doi:
10.19756/j.issn.0253-3820.221426
-
The identification and detection of new biomarkers have promoted the rapid development of highperformance detection technologies. MicroRNA (miRNA) has gradually become a specific biomarker for cancer diagnosis and prognosis, and the detection of disease-related miRNA is of great significance for improving the accuracy of disease diagnosis. In recent years, DNA fluorescent nanoprobes have gradually become an effective tool for monitoring and analyzing miRNA and dynamic changes in cells and organisms. However, traditional DNA nanoprobes are limited in obtaining high precision and resolution imaging signals due to the interference of biological autofluorescence, off-target effect and lack of temporal and spatial control. Activated DNA nanoprobes, as a newly developed paradigm, have demonstrated good potential to overcome these limitations by modulating the imaging and sensing properties through exogenous or endogenous factors. Here, we reviewed the recent progress in the design and construction of activated DNA nanoprobes and the improvement of miRNA bioimaging and sensing performance in complex biological systems, as well as the development prospects and challenges of activated DNA nanoprobes.
-
Keywords:
- DNA nanoprobe,
- MicroRNA,
- Biosensing,
- Precision imaging,
- Biomarker,
- Review
-
-
-
[1]
JET T, GINES G, RONDELEZ Y, TALY V. Chem. Soc. Rev., 2021, 50(6):4141-4161.
-
[2]
CHEN C Z, LI L, LODISH H F, BARTEL D P. Science, 2004, 303(5654):83-86.
-
[3]
BRENNECKE J, HIPFNER D R, STARK A, RUSSELL R B, COHEN S M. Cell, 2003, 113(1):25-36.
-
[4]
KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. Nucleic Acids Res., 2019, 47(D1):D155-D162.
-
[5]
DOSTIE J, MOURELATOS Z, YANG M, SHARMA A, DREYFUSS G. RNA, 2003, 9(2):180-186.
-
[6]
WANG Y, KEYS D N, AU-YOUNG J K, CHEN C. J. Cell. Physiol., 2009, 218(2):251-255.
-
[7]
XU P, VERNOOY S Y, GUO M, HAY B A. Curr. Biol., 2003, 13(9):790-795.
-
[8]
AMBROS V. Cell, 2003, 113(6):673-676.
-
[9]
DUTTA R K, CHINNAPAIYAN S, UNWALLA H. Mol. Ther. Nucleic Acids, 2019, 18:413-431.
-
[10]
XIAO K, LU D, HOEPFNER J, SANTER L, GUPTA S, PFANNE A, THUM S, LENDERS M, BRAND E, NORDBECK P, THUM T. Sci. Rep., 2019, 9:15277.
-
[11]
PENG H, NEWBIGGING A M, REID M S, UPPAL J S, XU J, ZHANG H, LE X C. Anal. Chem., 2020, 92(1):292-308.
-
[12]
LIANG C P, MA P Q, LIU H, GUO X, YIN B C, YE B C. Angew. Chem. Int. Ed., 2017, 56(31):9077-9081.
-
[13]
PRITCHARD C C, CHENG H H, TEWARI M. Nat. Rev. Genet., 2012, 13(5):358-369.
-
[14]
DONG H, LEI J, DING L, WEN Y, JU H, ZHANG X. Chem. Rev., 2013, 113(8):6207-6233.
-
[15]
YANG F, LU H, MENG X, DONG H, ZHANG X. Small, 2022, 18(10):2106281.
-
[16]
OBERNOSTERER G, MARTINEZ J, ALENIUS M. Nat. Protoc., 2007, 2(6):1508-1514.
-
[17]
KISHI J Y, LAPAN S W, BELIVEAU B J, WEST E R, ZHU A, SASAKI H M, SAKA S K, WANG Y, CEPKO C L, YIN P. Nat. Methods, 2019, 16(6):533-544.
-
[18]
LACROIX A, SLEIMAN H F. ACS Nano, 2021, 15(3):3631-3645.
-
[19]
-
[20]
SUN J, SUN X. TrAC, Trends Anal. Chem., 2020, 127:11590.
-
[21]
CHEN J, YANG H H, YIN W, ZHANG Y, MA Y, CHEN D, XU Y, LIU S Y, ZHANG L, DAI Z, ZOU X. Anal. Chem., 2019, 91(7):4625-4631.
-
[22]
YUE S, SONG X, SONG W, BI S. Chem. Sci., 2019, 10(6):1651-1658.
-
[23]
CHEN F, BAI M, CAO K, ZHAO Y, CAO X, WEI J, WU N, LI J, WANG L, FAN C, ZHAO Y. ACS Nano, 2017, 11(12):11908-11914.
-
[24]
YURKE B, TURBERFIELD A J, MILLS JR A P, SIMMEL F C, NEUMANN J L. Nature, 2000, 406(6796):605-608.
-
[25]
TIAN Y, MAO C. J. Am. Chem. Soc., 2004, 126(37):11410-11411.
-
[26]
WICKHAM S F J, BATH J, KATSUDA Y, ENDO M, HIDAKA K, SUGIYAMA H, TURBERFIELD A J. Nat. Nanotechnol., 2012, 7(3):169-173.
-
[27]
HUANG F, LIN M, DUAN R, LOU X, XIA F, WILLNER I. Nano Lett., 2018, 18(8):5116-5123.
-
[28]
CHEGLAKOV Z, CRONIN T M, HE C, WEIZMANN Y. J. Am. Chem. Soc., 2015, 137(19):6116-6119.
-
[29]
PENG H Y, LI X F, ZHANG H, LE X C. Nat. Commun., 2017, 8:14378.
-
[30]
XUE C, ZHANG S X, OUYANG C H, CHANG D, SALENA B J, LI Y, WU Z S. Angew. Chem. Int. Ed., 2018, 57(31):9739-9743.
-
[31]
ZHANG L, JEAN S R, LI X, SACK T, WANG Z, AHMED S, CHAN G, DAS J, ZARAGOZA A, SARGENT E H, KELLEY S O. Nano Lett., 2018, 18(10):6222-6228.
-
[32]
YI J T, CHEN T T, HUO J, CHU X. Anal. Chem., 2017, 89(22):12351-12359.
-
[33]
YANG H, WANG C, XU E, WEI W, LIU Y, LIU S. Anal. Chem., 2021, 93(16):6567-6572.
-
[34]
MENG X, WANG H, YANG M, LI J, YANG F, ZHANG K, DONG H, ZHANG X. Anal. Chem., 2021, 93(3):1693-1701.
-
[35]
LI C Y, LIU J X, YUHENG L, GAO J L, CHEN Y L, HE J W, XIN M K, LIU D, ZHENG B, SUN X. Anal. Chem., 2022, 94(13):5450-5459.
-
[36]
CHEN M, DUAN R, XU S, DUAN Z, YUAN Q, XIA F, HUANG F. Anal. Chem., 2021, 93(48):16264-16272.
-
[37]
ZHOU H, JIANG Y, ZHAO W, ZHANG S. ACS Appl. Mater. Interfaces, 2022, 14(11):13070-13078.
-
[38]
SHEN Y, LI Z, WANG G, MA N. ACS Sens., 2018, 3(2):494-503.
-
[39]
ZHAO J, LI Z, SHAO Y, HU W, LI L. Angew. Chem. Int. Ed., 2021, 60(33):17937-17941.
-
[40]
ZHAO T, SUN X, CHEN J, LI D, CAO W, CHEN S, YIN Y, XU S, LUO X. Anal. Chem., 2022, 94(13):5399-5405.
-
[41]
ZHAO T, GAO Y, WANG J, CUI Y, NIU S, XU S, LUO X. Anal. Chem., 2021, 93(36):12329-12336.
-
[42]
LU H, YANG F, LIU B, ZHANG K, CAO Y, DAI W, LI W, DONG H. Nanoscale Horiz., 2019, 4(2):472-479.
-
[43]
XIAN L, GE H, XU N, XU F, YAO Q, FAN J, LONG S, PENG X. Ind. Eng. Chem. Res., 2020, 59(47):20582-20590.
-
[44]
ZHANG K, MENG X, YANG Z, CAO Y, CHENG Y, WANG D, LU H, SHI Z, DONG H, ZHANG X. Adv. Mater., 2019, 31(12):1807888.
-
[45]
YANG Z, LIU B, HUANG T, XIE B P, DUAN W J, LI M M, CHEN J X, CHEN J, DAI Z. Anal. Chem., 2022, 94(22):8014-8023.
-
[46]
HU H, ZHOU F, WANG B, CHANG X, DAI T, TIAN R, WAN Y, WANG X, WANG G. Nanoscale, 2021, 13(3):1863-1868.
-
[47]
LIU X, WANG X, YE S, LI R, LI H. ACS Appl. Mater. Interfaces, 2021, 13(24):27825-27835.
-
[48]
MENG X, ZHANG K, YANG F, DAI W, LU H, DONG H, ZHANG X. Anal. Chem., 2020, 92(12):8333-8339.
-
[49]
LI M, ZHAO J, CHU H, MI Y, ZHOU Z, DI Z, ZHAO M, LI L. Adv. Mater., 2019, 31(45):1804745.
-
[50]
GAO J L, LIU Y H, ZHENG B, LIU J X, FANG W K, LIU D, SUN X M, TANG H W, LI C Y. ACS Appl. Mater. Interfaces, 2021, 13(27):31485-31494.
-
[51]
WANG W, SATYAVOLU N S R, WU Z, ZHANG J R, ZHU J J, LU Y. Angew. Chem. Int. Ed., 2017, 56(24):6798-6802.
-
[52]
ZHAO J, CHU H, ZHAO Y, LU Y, LI L. J. Am. Chem. Soc., 2019, 141(17):7056-7062.
-
[53]
LIU C, QI F, WEN F, LONG L, LIU A, YANG R. Methods Appl. Fluoresc., 2018, 6(2):024001.
-
[54]
YAN N, LIN L, XU C, TIAN H, CHEN X. Small, 2019, 15(41):e1903016.
-
[55]
DEIRRAM N, ZHANG C, KERMANIYAN S S, JOHNSTON A P R, SUCH G K. Macromol. Rapid Commun., 2019, 40(10):e1800917.
-
[56]
DI Z, ZHAO J, CHU H, XUE W, ZHAO Y, LI L. Adv. Mater., 2019, 31(33):e1901885.
-
[57]
JIANG Y, ZHOU H, ZHAO W, ZHANG S. Anal. Chem., 2022, 94(18):6771-6780.
-
[58]
SHI X R, JI L A, HU Y Y, GU J Y, WANG L M, LU W W, MENG J L, DU Y, HUANG L Z, NIE D X, YU Y Y. Sens. Actuators, B, 2022, 363:131848.
-
[59]
WANG Y, CHEN J, LIANG X, HAN H, WANG H, YANG Y, LI Q. Mol. Pharm., 2017, 14(7):2323-2332.
-
[60]
DI VIRGILIO F, SARTI A C, FALZONI S, DE MARCHI E, ADINOLFI E. Nat. Rev. Cancer, 2018, 18(10):601-618.
-
[61]
GODET I, SHIN Y J, JU J A, YE I C, WANG G, GILKES D M. Nat. Commun., 2019, 10(1):4862.
-
[62]
LI J, LIU S, WANG J, LIU R, YANG X, WANG K, HUANG J. Nucleic Acids Res., 2022, 50(7):e40.
-
[63]
WANG Z Q, DING T, WANG L C, WANG S, ZHOU M Z, ZHANG J X, CAI K Y. Nano Res., 2022, 15(2):845-857.
-
[64]
MENG X, DAI W, ZHANG K, DONG H, ZHANG X. Chem. Sci., 2018, 9(5):1184-1190.
-
[1]
-
-
-
[1]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[2]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[3]
Lian Jin , Juan Zhang , Libo Nie , Yan Deng , Ghulam Jilany Khana , Nongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774
-
[4]
Qiang HU , Zhiqi CHEN , Zhong CHEN , Xu WANG , Weina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086
-
[5]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[6]
Renyi Shao , Khurram Abbas , Vladimir Yu. Osipov , Haimei Zhu , Yuan Li , Usama , Hong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134
-
[7]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[8]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[9]
Fanghua Zhang , Yuyan Li , Hongyan Zhang , Wendong Liu , Zhe Hao , Mingzheng Shao , Ruizhong Zhang , Xiyan Li , Libing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848
-
[10]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[11]
Run Yang , Huajie Pang , Huiping Zang , Ruizhong Zhang , Zhicheng Zhang , Xiyan Li , Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135
-
[12]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[13]
Ling WANG , Weipeng YAN , Zhuoyi ZHENG , Sihan ZHU , Mingxian GONG , Xiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264
-
[14]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[15]
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
-
[16]
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
-
[17]
Chenshi Lin , Chao Teng , Bingbing Li , Wei He . Anti-inflammatory drug-assisted microRNA gene therapy for effectively improving pulmonary hemodynamics. Chinese Chemical Letters, 2025, 36(7): 110450-. doi: 10.1016/j.cclet.2024.110450
-
[18]
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
-
[19]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[20]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[1]
Metrics
- PDF Downloads(16)
- Abstract views(2412)
- HTML views(132)
Login In
DownLoad: