Citation: YI Rong-Nan,  WU Yan,  WANG Jun-Li,  ZHAO Fang,  CHEN Jin-Yang. Research Progress in Application of Metal-organic Frameworks in Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 147-159. doi: 10.19756/j.issn.0253-3820.221424 shu

Research Progress in Application of Metal-organic Frameworks in Surface-enhanced Raman Spectroscopy

  • Corresponding author: WU Yan,  CHEN Jin-Yang, 
  • Received Date: 17 August 2022
    Revised Date: 24 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21804011), the Science and Technology Innovation Program of Hunan Province (No. 2021RC2085), the High-level Talent Start-up Fund of Hunan Police College (No. 2021KYQD05), and the Natural Science Foundation of Hunan Province (No. 2022JJ40364).

  • Metal-organic frameworks (MOFs), which are self-assembled by metal ions and organic ligands through coordination chemistry, have periodically lattice crystalline porous structure, and have been widely used as materials due to their unique structures and properties. Because MOFs can greatly improve the target enrichment and signal enhancement performance of metal surface-enhanced Raman spectroscopy (SERS) substrates, MOFsbased SERS substrates have attracted much attention. The efficient SERS substrate enables SERS technology achieves high sensitivity, high selectivity, nondestructive and rapid detection. The advantages of MOFs and SERS greatly promote the development of SERS technology and widen its application range. In this review, the development of SERS, MOFs based substrate categories and their applications in SERS were reviewed, the key issues to be solved urgently and challenges were discussed, and the future development trend was prospected.
  • 加载中
    1. [1]

      HESS C. Chem. Soc. Rev., 2021, 50(5):3519-3564.

    2. [2]

      FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.

    3. [3]

      JEANMAIRE D L, VAN DUYNE R P. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.

    4. [4]

    5. [5]

      NILGHAZ A, MAHDI MOUSAVI S, AMIRI A, TIAN J, CAO R, WANG X. J. Agric. Food Chem., 2022, 70(18):5463-5476.

    6. [6]

      BRIÑAS E, GONZÁLEZ V J, HERRERO M A, ZOUGAGH M, RÍOS Á, VÁZQUEZ E. Environ. Sci. Technol., 2022, 56(13):9527-9535.

    7. [7]

    8. [8]

      ZONG C, XU M, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    9. [9]

      TAHIR M A, DINA N E, CHENG H, VALEV V K, ZHANG L. Nanoscale, 2021, 13(27):11593-11634.

    10. [10]

      ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.

    11. [11]

      AUSTIN L A, OSSEIRAN S, EVANS C L. Analyst, 2016, 141(2):476-503.

    12. [12]

      YU W W, WHITE I M. Anal. Chem., 2010, 82(23):9626-9630.

    13. [13]

      GAO C, LU Z, LIU Y, ZHANG Q, CHI M, CHENG Q, YIN Y. Angew. Chem. Int. Ed., 2012, 51(23):5629-5633.

    14. [14]

      LI J F, ZHANG Y J, DING S Y, PANNEERSELVAM R, TIAN Z Q. Chem. Rev., 2017, 117(7):5002-5069.

    15. [15]

      SHAO Q, ZHANG X, LIANG P, CHEN Q, QI X, ZOU M. Appl. Surf. Sci., 2022, 596:153550.

    16. [16]

      HAO N, LIU P, BACHMAN H, PEI Z, ZHANG P, RUFO J, WANG Z, ZHAO S, HUANG T J. ACS Nano, 2020, 14(5):6150-6163.

    17. [17]

      LAI H, XU F, ZHANG Y, WANG L. J. Mater. Chem. B, 2018, 6(24):4008-4028.

    18. [18]

      LIU Z, WANG Y, DENG R, YANG L, YU S, XU S, XU W. ACS Appl. Mater. Interfaces, 2016, 8(22):14160-14168.

    19. [19]

      HUANG S, CHEN G, YE N, KOU X, ZHANG R, SHEN J, OUYANG G. ACS Appl. Mater. Interfaces, 2020, 12(51):57343-57351.

    20. [20]

      XI C Y, ZHANG M, JIANG L, CHEN H Y, LV J, HE Y, HAFEZ M E, QIAN R C, LI D W. Sens. Actuators, B, 2022, 369:132264.

    21. [21]

      LIU X, LIANG T, ZHANG R, DING Q, WU S, LI C, LIN Y, YE Y, ZHONG Z, ZHOU M. ACS Appl. Mater. Interfaces, 2021, 13(8):9643-9655.

    22. [22]

      SUN H, CONG S, ZHENG Z, WANG Z, CHEN Z, ZHAO Z. J. Am. Chem. Soc., 2019, 141(2):870-878.

    23. [23]

      YU T H, HO C H, WU C Y, CHIEN C H, LIN C H, LEE S. J. Raman Spectrosc., 2013, 44(11):1506-1511.

    24. [24]

      SEN BISHWAS M, MALIK M, PODDAR P. New J. Chem., 2021, 45(16):7145-7153.

    25. [25]

      CAI Y, WU Y, XUAN T, GUO X, WEN Y, YANG H. ACS Appl. Mater. Interfaces, 2018, 10(18):15412-15417.

    26. [26]

      HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.

    27. [27]

      QIAO X, SU B, LIU C, SONG Q, LUO D, MO G, WANG T. Adv. Mater., 2018, 30(5):1702275.

    28. [28]

      LI Q, GONG S, ZHANG H, HUANG F, ZHANG L, LI S. Chem. Eng. J., 2019, 371:26-33.

    29. [29]

      YANG J, PAN M, YANG X, LIU K, SONG Y, WANG S. Food Chem., 2022, 395:133623.

    30. [30]

      LEE H K, LEE Y H, MORABITO J V, LIU Y, KOH C S L, PHANG I Y, PEDIREDDY S, HAN X, CHOU L Y, TSUNG C K, LING X Y. J. Am. Chem. Soc., 2017, 139(33):11513-11518.

    31. [31]

      LIAO J, WANG D, LIU A, HU Y, LI G. Analyst, 2015, 140(24):8165-8171.

    32. [32]

      CARRILLO-CARRIÓN C, MARTÍNEZ R, NAVARRO POUPARD M F, PELAZ B, POLO E, ARENAS-VIVO A, OLGIATI A, TABOADA P, SOLIMAN M G, CATALÁN Ú, FERNÁNDEZ-CASTILLEJO S, SOLÀ R, PARAK W J, HORCAJADA P, ALVAREZ-PUEBLA R A, DEL PINO P. Angew. Chem. Int. Ed., 2019, 58(21):7078-7082.

    33. [33]

      LI J, LIU Z, TIAN D, LI B, SHAO L, LOU Z. Nanoscale, 2022, 14(14):5561-5568.

    34. [34]

      HE J, DONG J, HU Y, LI G, HU Y. Nanoscale, 2019, 11(13):6089-6100.

    35. [35]

      SUGIKAWA K, NAGATA S, FURUKAWA Y, KOKADO K, SADA K. Chem. Mater., 2013, 25(13):2565-2570.

    36. [36]

      LU G, LI S, GUO Z, FARHA O K, HAUSER B G, QI X, WANG Y, WANG X, HAN S, LIU X, DUCHENE J S, ZHANG H, ZHANG Q, CHEN X, MA J, LOO S C J, WEI W D, YANG Y, HUPP J T, HUO F. Nat. Chem., 2012, 4(4):310-316.

    37. [37]

      OSTERRIETH J W M, WRIGHT D, NOH H, KUNG C W, VULPE D, LI A, PARK J E, VAN DUYNE R P, MOGHADAM P Z, BAUMBERG J J, FARHA O K, FAIREN-JIMENEZ D. J. Am. Chem. Soc., 2019, 141(9):3893-3900.

    38. [38]

      XIN M, FU Y, ZHOU Y, HAN J, MAO Y, LI M, LIU J, HUANG M. New J. Chem., 2020, 44(40):17570-17576.

    39. [39]

      HE L, LIU Y, LIU J, XIONG Y, ZHENG J, LIU Y, TANG Z. Angew. Chem. Int. Ed., 2013, 52(13):3741-3745.

    40. [40]

      ZHANG Y, HU Y, LI G, ZHANG R. Microchim. Acta, 2019, 186(7):477.

    41. [41]

      KOH C S L, LEE H K, HAN X, SIM H Y F, LING X Y. Chem. Commun., 2018, 54(20):2546-2549.

    42. [42]

      ZHU Q L, LI J, XU Q. J. Am. Chem. Soc., 2013, 135(28):10210-10213.

    43. [43]

      XUAN T, GAO Y, CAI Y, GUO X, WEN Y, YANG H. Sens. Actuators, B, 2019, 293:289-295.

    44. [44]

      HU Y, LIAO J, WANG D, LI G. Anal. Chem., 2014, 86(8):3955-3963.

    45. [45]

      LIU S, HUO Y, DENG S, LI G, LI S, HUANG L, REN S, GAO Z. Biosens. Bioelectron., 2022, 201:113891.

    46. [46]

      CAO X, HONG S, JIANG Z, SHE Y, WANG S, ZHANG C, LI H, JIN F, JIN M, WANG J. Analyst, 2017, 142(14):2640-2647.

    47. [47]

      WANG X, XIA Z, FODJO E K, DENG W, LI D. J. Mater. Chem. B, 2022, 10(16):3023-3031.

    48. [48]

      SIM H Y F, LEE H K, HAN X, KOH C S L, PHAN-QUANG G C, LAY C L, KAO Y C, PHANG I Y, YEOW E K L, LING X Y. Angew. Chem. Int. Ed., 2018, 57(52):17058-17062.

    49. [49]

      LI J, SHI J, LIANG A, JIANG Z. Analyst, 2022, 147(11):2369-2377.

    50. [50]

      FENG J, LU H, YANG Y, HUANG W, CHENG H, KONG H, LI L. Microchim. Acta, 2021, 188(8):280.

    51. [51]

      CAI G, GE K, OUYANG X, HU Y, LI G. J. Sep. Sci., 2020, 43(14):2834-2841.

    52. [52]

      JIANG Z, GAO P, YANG L, HUANG C, LI Y. Anal. Chem., 2015, 87(24):12177-12182.

    53. [53]

      WU Y, CHEN J Y, HE W M. Sens. Actuators, B, 2022, 365:131939.

    54. [54]

      ZHAO X, YANG T, WANG D, ZHANG N, YANG H, JING X, NIU R, YANG Z, XIE Y, MENG L. Anal. Chem., 2022, 94(10):4484-4494.

    55. [55]

      HU S, JIANG Y, WU Y, GUO X, YING Y, WEN Y, YANG H. ACS Appl. Mater. Interfaces, 2020, 12(49):55324-55330.

    56. [56]

      KUANG X, YE S, LI X, MA Y, ZHANG C, TANG B. Chem. Commun., 2016, 52(31):5432-5435.

    57. [57]

      LI H, GENG W, HARUNA S A, HASSAN M M, CHEN Q. Anal. Chim. Acta, 2022, 1220:339999.

    58. [58]

      HUO N, LI D, ZHENG S, DENG W. Chem. Eng. J., 2022, 432:134317.

    59. [59]

      WANG Q, ZHAO Y, BU T, WANG X, XU Z, ZHANGSUN H, WANG L. Sens. Actuators, B, 2022, 352:131025.

    60. [60]

      DAS A, CHOI N, MOON J I, CHOO J. J. Raman Spectrosc., 2021, 52(2):506-515.

    61. [61]

      QI G, WANG J, MA K, ZHANG Y, ZHANG J, XU W, JIN Y. Anal. Chem., 2021, 93(4):2183-2190.

    62. [62]

      SHAO Q, ZHANG D, WANG C, TANG Z, ZOU M, YANG X, GONG H, YU Z, JIN S, LIANG P. J. Phys. Chem. C, 2021, 125(13):7297-7304.

    63. [63]

      MA X, WEN S, XUE X, GUO Y, JIN J, SONG W, ZHAO B. ACS Appl. Mater. Interfaces, 2018, 10(30):25726-25736.

    64. [64]

      LEE J Y, LEE S, SHIN D, PARK J T, CHOI I. Adv. Mater. Interfaces, 2022, 9(7):2102122.

    65. [65]

      XIA Z, LI D, DENG W. Anal. Chem., 2021, 93(11):4924-4931.

    66. [66]

      YANG Z, LIU T, WANG W, ZHANG L. Chem. Commun., 2020, 56(20):3065-3068.

    67. [67]

      DE MARCHI S, VÁZQUEZ-IGLESIAS L, BODELÓN G, PÉREZ-JUSTE I, FERNÁNDEZ L Á, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Chem. Mater., 2020, 32(13):5739-5749.

    68. [68]

      ZHOU X, LIU G, ZHANG H, LI Y, CAI W. J. Hazard. Mater., 2019, 368:429-435.

    69. [69]

      JIANG P, HU Y, LI G. Talanta, 2019, 200:212-217.

    70. [70]

      ZHAI Y, XUAN T, WU Y, GUO X, YING Y, WEN Y, YANG H. Sens. Actuators, B, 2021, 326:128852.

    71. [71]

      XU F, SHANG W, XUAN M, MA G, BEN Z. Chemosphere, 2022, 288:132635.

    72. [72]

      PU H, ZHU H, XU F, SUN D W. J. Raman Spectrosc., 2022, 53(4):682-693.

    73. [73]

      XUE Y, SHAO J, SUI G, MA Y, LI H. J. Environ. Chem. Eng., 2021, 9(6):106317.

    74. [74]

      ZHANG Y, XUE C, LI P, CUI S, CUI D, JIN H. J. Hazard. Mater., 2022, 424:127686.

    75. [75]

      XUE X, CHEN L, WANG C, QIAO Y, ZHAO C, WANG H, NIE P, LI J, ZHAO J F, CHANG L. New J. Chem., 2021, 45(3):1355-1362.

    76. [76]

      SUN Y, YU X, HU J, ZHUANG X, WANG J, QIU H, REN H, ZHANG S, ZHANG Y, HU Y. ACS Sustain. Chem. Eng., 2022, 10(26):8400-8410.

    77. [77]

      HUANG Y, XIE T, ZOU K, GU Y, YANG G, ZHANG F, QU L L, YANG S. Nanoscale, 2021, 13(31):13344-13352.

    78. [78]

      WANG Q, XU Z, ZHAO Y, ZHANGSUN H, BU T, ZHANG C, WANG X, WANG L. Sens. Actuators, B, 2021, 329:129080.

    79. [79]

      LI D, CAO X, ZHANG Q, REN X, JIANG L, LI D, DENG W, LIU H. J. Mater. Chem. A, 2019, 7(23):14108-14117.

    80. [80]

      YAN L, YANG P, CAI H, CHEN L, WANG Y, LI M. Anal. Methods, 2020, 12(32):4064-4071.

    81. [81]

      SHI C, SHEN R, QIN L, KANG S Z, LI X. Appl. Surf. Sci., 2022, 585:152715.

    82. [82]

      LAFUENTE M, DE MARCHI S, URBIZTONDO M, PASTORIZA-SANTOS I, PÉREZ-JUSTE I, SANTAMARÍA J, MALLADA R, PINA M. ACS Sens., 2021, 6(6):2241-2251.

    83. [83]

      GUSELNIKOVA O, POSTNIKOV P, ELASHNIKOV R, MILIUTINA E, SVORCIK V, LYUTAKOV O. Anal. Chim. Acta, 2019, 1068:70-79.

    84. [84]

      LAI H, SHANG W, YUN Y, CHEN D, WU L, XU F. Microchim. Acta, 2019, 186(3):144.

    85. [85]

      YANG K, ZONG S, ZHANG Y, QIAN Z, LIU Y, ZHU K, LI L, LI N, WANG Z, CUI Y. ACS Appl. Mater. Interfaces, 2020, 12(1):1395-1403.

    86. [86]

      ZHAO X, NIU R, FAN S, JING X, GAO R, YANG H, WANG H, WANG D, YANG Z, XIE Y, SHE J, CHEN P, MENG L. ACS Sens., 2022, 7(9):2671-2679.

    87. [87]

      HE Y, WANG Y, YANG X, XIE S, YUAN R, CHAI Y. ACS Appl. Mater. Interfaces, 2016, 8(12):7683-7690.

    88. [88]

      WU C, WANG S, LUO X, YUAN R, YANG X. Chem. Commun., 2020, 56(9):1413-1416.

    89. [89]

      KAMAL S, CHOWDHURY A, YANG T C K. Spectrochim. Acta, Part A, 2022, 270:120826.

    90. [90]

      CONG T, ZHANG Y, HUANG H, ZHAO Y, LI C, FAN Z, PAN L. Anal. Chim. Acta, 2022, 1224:340201.

    91. [91]

      XU J, CHENG C, SHANG S, GAO W, ZENG P, JIANG S. ACS Appl. Mater. Interfaces, 2020, 12(44):49452-49463.

    92. [92]

      KIM H, JANG H, MOON J, BYUN J, JEONG J, JUNG J, LIM E K, KANG T. Adv. Mater. Interfaces, 2019, 6(13):1900427.

    93. [93]

      LI H, XU H, ZHANG J, LI Y, YU H, ZHAO Y, WANG D, LI Y, ZHU J. New J. Chem., 2022, 46(25):12069-12076.

    94. [94]

      CHEN Q Q, HOU R N, ZHU Y Z, WANG X T, ZHANG H, ZHANG Y J, ZHANG L, TIAN Z Q, LI J F. Anal. Chem., 2021, 93(19):7188-7195.

    95. [95]

      JIANG L, HE C H, CHEN H Y, XI C Y, FODJO E K, ZHOU Z R, QIAN R C, LI D W, HAFEZ M E. Anal. Chem., 2021, 93(37):12609-12616.

    96. [96]

      PHAN-QUANG G C, YANG N, LEE H K, SIM H Y F, KOH C S L, KAO Y C, WONG Z C, TAN E K M, MIAO Y E, FAN W, LIU T, PHANG I Y, LING X Y. ACS Nano, 2019, 13(10):12090-12099.

    97. [97]

      LEI Z, DAI C, CHEN B. Chem. Rev., 2014, 114(2):1289-1326.

    98. [98]

      LEE H K, KOH C S, LO W S, LIU Y, PHANG I Y, SIM H Y, LEE Y H, PHAN-QUANG G C, HAN X, TSUNG C K, LING X Y. J. Am. Chem. Soc., 2020, 142(26):11521-11527.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    5. [5]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    10. [10]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    11. [11]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    16. [16]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    17. [17]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

Metrics
  • PDF Downloads(22)
  • Abstract views(3034)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return