Citation:
YI Rong-Nan, WU Yan, WANG Jun-Li, ZHAO Fang, CHEN Jin-Yang. Research Progress in Application of Metal-organic Frameworks in Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(2): 147-159.
doi:
10.19756/j.issn.0253-3820.221424
-
Metal-organic frameworks (MOFs), which are self-assembled by metal ions and organic ligands through coordination chemistry, have periodically lattice crystalline porous structure, and have been widely used as materials due to their unique structures and properties. Because MOFs can greatly improve the target enrichment and signal enhancement performance of metal surface-enhanced Raman spectroscopy (SERS) substrates, MOFsbased SERS substrates have attracted much attention. The efficient SERS substrate enables SERS technology achieves high sensitivity, high selectivity, nondestructive and rapid detection. The advantages of MOFs and SERS greatly promote the development of SERS technology and widen its application range. In this review, the development of SERS, MOFs based substrate categories and their applications in SERS were reviewed, the key issues to be solved urgently and challenges were discussed, and the future development trend was prospected.
-
-
-
[1]
HESS C. Chem. Soc. Rev., 2021, 50(5):3519-3564.
-
[2]
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.
-
[3]
JEANMAIRE D L, VAN DUYNE R P. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.
-
[4]
-
[5]
NILGHAZ A, MAHDI MOUSAVI S, AMIRI A, TIAN J, CAO R, WANG X. J. Agric. Food Chem., 2022, 70(18):5463-5476.
-
[6]
BRIÑAS E, GONZÁLEZ V J, HERRERO M A, ZOUGAGH M, RÍOS Á, VÁZQUEZ E. Environ. Sci. Technol., 2022, 56(13):9527-9535.
-
[7]
-
[8]
ZONG C, XU M, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.
-
[9]
TAHIR M A, DINA N E, CHENG H, VALEV V K, ZHANG L. Nanoscale, 2021, 13(27):11593-11634.
-
[10]
ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.
-
[11]
AUSTIN L A, OSSEIRAN S, EVANS C L. Analyst, 2016, 141(2):476-503.
-
[12]
YU W W, WHITE I M. Anal. Chem., 2010, 82(23):9626-9630.
-
[13]
GAO C, LU Z, LIU Y, ZHANG Q, CHI M, CHENG Q, YIN Y. Angew. Chem. Int. Ed., 2012, 51(23):5629-5633.
-
[14]
LI J F, ZHANG Y J, DING S Y, PANNEERSELVAM R, TIAN Z Q. Chem. Rev., 2017, 117(7):5002-5069.
-
[15]
SHAO Q, ZHANG X, LIANG P, CHEN Q, QI X, ZOU M. Appl. Surf. Sci., 2022, 596:153550.
-
[16]
HAO N, LIU P, BACHMAN H, PEI Z, ZHANG P, RUFO J, WANG Z, ZHAO S, HUANG T J. ACS Nano, 2020, 14(5):6150-6163.
-
[17]
LAI H, XU F, ZHANG Y, WANG L. J. Mater. Chem. B, 2018, 6(24):4008-4028.
-
[18]
LIU Z, WANG Y, DENG R, YANG L, YU S, XU S, XU W. ACS Appl. Mater. Interfaces, 2016, 8(22):14160-14168.
-
[19]
HUANG S, CHEN G, YE N, KOU X, ZHANG R, SHEN J, OUYANG G. ACS Appl. Mater. Interfaces, 2020, 12(51):57343-57351.
-
[20]
XI C Y, ZHANG M, JIANG L, CHEN H Y, LV J, HE Y, HAFEZ M E, QIAN R C, LI D W. Sens. Actuators, B, 2022, 369:132264.
-
[21]
LIU X, LIANG T, ZHANG R, DING Q, WU S, LI C, LIN Y, YE Y, ZHONG Z, ZHOU M. ACS Appl. Mater. Interfaces, 2021, 13(8):9643-9655.
-
[22]
SUN H, CONG S, ZHENG Z, WANG Z, CHEN Z, ZHAO Z. J. Am. Chem. Soc., 2019, 141(2):870-878.
-
[23]
YU T H, HO C H, WU C Y, CHIEN C H, LIN C H, LEE S. J. Raman Spectrosc., 2013, 44(11):1506-1511.
-
[24]
SEN BISHWAS M, MALIK M, PODDAR P. New J. Chem., 2021, 45(16):7145-7153.
-
[25]
CAI Y, WU Y, XUAN T, GUO X, WEN Y, YANG H. ACS Appl. Mater. Interfaces, 2018, 10(18):15412-15417.
-
[26]
HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.
-
[27]
QIAO X, SU B, LIU C, SONG Q, LUO D, MO G, WANG T. Adv. Mater., 2018, 30(5):1702275.
-
[28]
LI Q, GONG S, ZHANG H, HUANG F, ZHANG L, LI S. Chem. Eng. J., 2019, 371:26-33.
-
[29]
YANG J, PAN M, YANG X, LIU K, SONG Y, WANG S. Food Chem., 2022, 395:133623.
-
[30]
LEE H K, LEE Y H, MORABITO J V, LIU Y, KOH C S L, PHANG I Y, PEDIREDDY S, HAN X, CHOU L Y, TSUNG C K, LING X Y. J. Am. Chem. Soc., 2017, 139(33):11513-11518.
-
[31]
LIAO J, WANG D, LIU A, HU Y, LI G. Analyst, 2015, 140(24):8165-8171.
-
[32]
CARRILLO-CARRIÓN C, MARTÍNEZ R, NAVARRO POUPARD M F, PELAZ B, POLO E, ARENAS-VIVO A, OLGIATI A, TABOADA P, SOLIMAN M G, CATALÁN Ú, FERNÁNDEZ-CASTILLEJO S, SOLÀ R, PARAK W J, HORCAJADA P, ALVAREZ-PUEBLA R A, DEL PINO P. Angew. Chem. Int. Ed., 2019, 58(21):7078-7082.
-
[33]
LI J, LIU Z, TIAN D, LI B, SHAO L, LOU Z. Nanoscale, 2022, 14(14):5561-5568.
-
[34]
HE J, DONG J, HU Y, LI G, HU Y. Nanoscale, 2019, 11(13):6089-6100.
-
[35]
SUGIKAWA K, NAGATA S, FURUKAWA Y, KOKADO K, SADA K. Chem. Mater., 2013, 25(13):2565-2570.
-
[36]
LU G, LI S, GUO Z, FARHA O K, HAUSER B G, QI X, WANG Y, WANG X, HAN S, LIU X, DUCHENE J S, ZHANG H, ZHANG Q, CHEN X, MA J, LOO S C J, WEI W D, YANG Y, HUPP J T, HUO F. Nat. Chem., 2012, 4(4):310-316.
-
[37]
OSTERRIETH J W M, WRIGHT D, NOH H, KUNG C W, VULPE D, LI A, PARK J E, VAN DUYNE R P, MOGHADAM P Z, BAUMBERG J J, FARHA O K, FAIREN-JIMENEZ D. J. Am. Chem. Soc., 2019, 141(9):3893-3900.
-
[38]
XIN M, FU Y, ZHOU Y, HAN J, MAO Y, LI M, LIU J, HUANG M. New J. Chem., 2020, 44(40):17570-17576.
-
[39]
HE L, LIU Y, LIU J, XIONG Y, ZHENG J, LIU Y, TANG Z. Angew. Chem. Int. Ed., 2013, 52(13):3741-3745.
-
[40]
ZHANG Y, HU Y, LI G, ZHANG R. Microchim. Acta, 2019, 186(7):477.
-
[41]
KOH C S L, LEE H K, HAN X, SIM H Y F, LING X Y. Chem. Commun., 2018, 54(20):2546-2549.
-
[42]
ZHU Q L, LI J, XU Q. J. Am. Chem. Soc., 2013, 135(28):10210-10213.
-
[43]
XUAN T, GAO Y, CAI Y, GUO X, WEN Y, YANG H. Sens. Actuators, B, 2019, 293:289-295.
-
[44]
HU Y, LIAO J, WANG D, LI G. Anal. Chem., 2014, 86(8):3955-3963.
-
[45]
LIU S, HUO Y, DENG S, LI G, LI S, HUANG L, REN S, GAO Z. Biosens. Bioelectron., 2022, 201:113891.
-
[46]
CAO X, HONG S, JIANG Z, SHE Y, WANG S, ZHANG C, LI H, JIN F, JIN M, WANG J. Analyst, 2017, 142(14):2640-2647.
-
[47]
WANG X, XIA Z, FODJO E K, DENG W, LI D. J. Mater. Chem. B, 2022, 10(16):3023-3031.
-
[48]
SIM H Y F, LEE H K, HAN X, KOH C S L, PHAN-QUANG G C, LAY C L, KAO Y C, PHANG I Y, YEOW E K L, LING X Y. Angew. Chem. Int. Ed., 2018, 57(52):17058-17062.
-
[49]
LI J, SHI J, LIANG A, JIANG Z. Analyst, 2022, 147(11):2369-2377.
-
[50]
FENG J, LU H, YANG Y, HUANG W, CHENG H, KONG H, LI L. Microchim. Acta, 2021, 188(8):280.
-
[51]
CAI G, GE K, OUYANG X, HU Y, LI G. J. Sep. Sci., 2020, 43(14):2834-2841.
-
[52]
JIANG Z, GAO P, YANG L, HUANG C, LI Y. Anal. Chem., 2015, 87(24):12177-12182.
-
[53]
WU Y, CHEN J Y, HE W M. Sens. Actuators, B, 2022, 365:131939.
-
[54]
ZHAO X, YANG T, WANG D, ZHANG N, YANG H, JING X, NIU R, YANG Z, XIE Y, MENG L. Anal. Chem., 2022, 94(10):4484-4494.
-
[55]
HU S, JIANG Y, WU Y, GUO X, YING Y, WEN Y, YANG H. ACS Appl. Mater. Interfaces, 2020, 12(49):55324-55330.
-
[56]
KUANG X, YE S, LI X, MA Y, ZHANG C, TANG B. Chem. Commun., 2016, 52(31):5432-5435.
-
[57]
LI H, GENG W, HARUNA S A, HASSAN M M, CHEN Q. Anal. Chim. Acta, 2022, 1220:339999.
-
[58]
HUO N, LI D, ZHENG S, DENG W. Chem. Eng. J., 2022, 432:134317.
-
[59]
WANG Q, ZHAO Y, BU T, WANG X, XU Z, ZHANGSUN H, WANG L. Sens. Actuators, B, 2022, 352:131025.
-
[60]
DAS A, CHOI N, MOON J I, CHOO J. J. Raman Spectrosc., 2021, 52(2):506-515.
-
[61]
QI G, WANG J, MA K, ZHANG Y, ZHANG J, XU W, JIN Y. Anal. Chem., 2021, 93(4):2183-2190.
-
[62]
SHAO Q, ZHANG D, WANG C, TANG Z, ZOU M, YANG X, GONG H, YU Z, JIN S, LIANG P. J. Phys. Chem. C, 2021, 125(13):7297-7304.
-
[63]
MA X, WEN S, XUE X, GUO Y, JIN J, SONG W, ZHAO B. ACS Appl. Mater. Interfaces, 2018, 10(30):25726-25736.
-
[64]
LEE J Y, LEE S, SHIN D, PARK J T, CHOI I. Adv. Mater. Interfaces, 2022, 9(7):2102122.
-
[65]
XIA Z, LI D, DENG W. Anal. Chem., 2021, 93(11):4924-4931.
-
[66]
YANG Z, LIU T, WANG W, ZHANG L. Chem. Commun., 2020, 56(20):3065-3068.
-
[67]
DE MARCHI S, VÁZQUEZ-IGLESIAS L, BODELÓN G, PÉREZ-JUSTE I, FERNÁNDEZ L Á, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Chem. Mater., 2020, 32(13):5739-5749.
-
[68]
ZHOU X, LIU G, ZHANG H, LI Y, CAI W. J. Hazard. Mater., 2019, 368:429-435.
-
[69]
JIANG P, HU Y, LI G. Talanta, 2019, 200:212-217.
-
[70]
ZHAI Y, XUAN T, WU Y, GUO X, YING Y, WEN Y, YANG H. Sens. Actuators, B, 2021, 326:128852.
-
[71]
XU F, SHANG W, XUAN M, MA G, BEN Z. Chemosphere, 2022, 288:132635.
-
[72]
PU H, ZHU H, XU F, SUN D W. J. Raman Spectrosc., 2022, 53(4):682-693.
-
[73]
XUE Y, SHAO J, SUI G, MA Y, LI H. J. Environ. Chem. Eng., 2021, 9(6):106317.
-
[74]
ZHANG Y, XUE C, LI P, CUI S, CUI D, JIN H. J. Hazard. Mater., 2022, 424:127686.
-
[75]
XUE X, CHEN L, WANG C, QIAO Y, ZHAO C, WANG H, NIE P, LI J, ZHAO J F, CHANG L. New J. Chem., 2021, 45(3):1355-1362.
-
[76]
SUN Y, YU X, HU J, ZHUANG X, WANG J, QIU H, REN H, ZHANG S, ZHANG Y, HU Y. ACS Sustain. Chem. Eng., 2022, 10(26):8400-8410.
-
[77]
HUANG Y, XIE T, ZOU K, GU Y, YANG G, ZHANG F, QU L L, YANG S. Nanoscale, 2021, 13(31):13344-13352.
-
[78]
WANG Q, XU Z, ZHAO Y, ZHANGSUN H, BU T, ZHANG C, WANG X, WANG L. Sens. Actuators, B, 2021, 329:129080.
-
[79]
LI D, CAO X, ZHANG Q, REN X, JIANG L, LI D, DENG W, LIU H. J. Mater. Chem. A, 2019, 7(23):14108-14117.
-
[80]
YAN L, YANG P, CAI H, CHEN L, WANG Y, LI M. Anal. Methods, 2020, 12(32):4064-4071.
-
[81]
SHI C, SHEN R, QIN L, KANG S Z, LI X. Appl. Surf. Sci., 2022, 585:152715.
-
[82]
LAFUENTE M, DE MARCHI S, URBIZTONDO M, PASTORIZA-SANTOS I, PÉREZ-JUSTE I, SANTAMARÍA J, MALLADA R, PINA M. ACS Sens., 2021, 6(6):2241-2251.
-
[83]
GUSELNIKOVA O, POSTNIKOV P, ELASHNIKOV R, MILIUTINA E, SVORCIK V, LYUTAKOV O. Anal. Chim. Acta, 2019, 1068:70-79.
-
[84]
LAI H, SHANG W, YUN Y, CHEN D, WU L, XU F. Microchim. Acta, 2019, 186(3):144.
-
[85]
YANG K, ZONG S, ZHANG Y, QIAN Z, LIU Y, ZHU K, LI L, LI N, WANG Z, CUI Y. ACS Appl. Mater. Interfaces, 2020, 12(1):1395-1403.
-
[86]
ZHAO X, NIU R, FAN S, JING X, GAO R, YANG H, WANG H, WANG D, YANG Z, XIE Y, SHE J, CHEN P, MENG L. ACS Sens., 2022, 7(9):2671-2679.
-
[87]
HE Y, WANG Y, YANG X, XIE S, YUAN R, CHAI Y. ACS Appl. Mater. Interfaces, 2016, 8(12):7683-7690.
-
[88]
WU C, WANG S, LUO X, YUAN R, YANG X. Chem. Commun., 2020, 56(9):1413-1416.
-
[89]
KAMAL S, CHOWDHURY A, YANG T C K. Spectrochim. Acta, Part A, 2022, 270:120826.
-
[90]
CONG T, ZHANG Y, HUANG H, ZHAO Y, LI C, FAN Z, PAN L. Anal. Chim. Acta, 2022, 1224:340201.
-
[91]
XU J, CHENG C, SHANG S, GAO W, ZENG P, JIANG S. ACS Appl. Mater. Interfaces, 2020, 12(44):49452-49463.
-
[92]
KIM H, JANG H, MOON J, BYUN J, JEONG J, JUNG J, LIM E K, KANG T. Adv. Mater. Interfaces, 2019, 6(13):1900427.
-
[93]
LI H, XU H, ZHANG J, LI Y, YU H, ZHAO Y, WANG D, LI Y, ZHU J. New J. Chem., 2022, 46(25):12069-12076.
-
[94]
CHEN Q Q, HOU R N, ZHU Y Z, WANG X T, ZHANG H, ZHANG Y J, ZHANG L, TIAN Z Q, LI J F. Anal. Chem., 2021, 93(19):7188-7195.
-
[95]
JIANG L, HE C H, CHEN H Y, XI C Y, FODJO E K, ZHOU Z R, QIAN R C, LI D W, HAFEZ M E. Anal. Chem., 2021, 93(37):12609-12616.
-
[96]
PHAN-QUANG G C, YANG N, LEE H K, SIM H Y F, KOH C S L, KAO Y C, WONG Z C, TAN E K M, MIAO Y E, FAN W, LIU T, PHANG I Y, LING X Y. ACS Nano, 2019, 13(10):12090-12099.
-
[97]
LEI Z, DAI C, CHEN B. Chem. Rev., 2014, 114(2):1289-1326.
-
[98]
LEE H K, KOH C S, LO W S, LIU Y, PHANG I Y, SIM H Y, LEE Y H, PHAN-QUANG G C, HAN X, TSUNG C K, LING X Y. J. Am. Chem. Soc., 2020, 142(26):11521-11527.
-
[1]
-
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[3]
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
-
[4]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[5]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[6]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[7]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[8]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046
-
[9]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[10]
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
-
[11]
Yachao HUANG , Chuanwang ZENG , Guiyong LIU , Jinming ZENG , Chao LIU , Xiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133
-
[12]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[13]
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
-
[14]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[15]
. Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.
-
[16]
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
-
[17]
Xiaogang YANG , Xinya ZHANG , Jing LI , Huilin WANG , Min LI , Xiaotian WEI , Xinci WU , Lufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167
-
[18]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[19]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[20]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[1]
Metrics
- PDF Downloads(22)
- Abstract views(3034)
- HTML views(380)
Login In
DownLoad: