Citation: LI Li,  LI Meng,  YANG Ming-Li,  LI Hong-Lei,  ZHANG Huan,  MA Yue,  LIN Le-Er,  ZHANG Ming. Selective Detection of Calcium Folinate by Fluorescence Quenching of Nitrogen and Phosphorus Codoped Carbon Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 296-304. doi: 10.19756/j.issn.0253-3820.221407 shu

Selective Detection of Calcium Folinate by Fluorescence Quenching of Nitrogen and Phosphorus Codoped Carbon Nanoparticles

  • Corresponding author: LI Li,  ZHANG Ming, 
  • Received Date: 9 August 2022
    Revised Date: 11 December 2022

    Fund Project: Supported by the Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents Fund, the Qing Lan Project Fund of Jiangsu Province (No. KD2021qljs001), the Science and Technology Project Fund of Gaoxin District in Lianyungang (No. HZ201906), the Petrel Plan Project Fund of Lianyungang (No. 2020-QD-005), the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (Nos. 202113980012Y, 202113980014Y) and the Science and Technology Funds of Kangda College of Nanjing Medical University (Nos. KD2020KYJJZD074, KD2021KYJJZD014, KD2021KYRC003, KD2021KYRC015).

  • Nitrogen and phosphorus codoped carbon nanoparticles (N/P-CNPs) were synthesized by one-step hydrothermal method using ammonium phosphate and sodium ascorbate as raw materials, with a quantum yield of 19%. Based on the rapid and highly selective quenching of N/P-CNPs by calcium folinate (CF), a new method for quantitative determination of CF in CF injection samples was established. Under the optimal experimental conditions, the concentration of CF in the range of 0.2-108.5 μmol/L and the degree of fluorescence quenching of N/P-CNPs ((F0-F)/F0, F0 is the initial fluorescence intensity, F is the fluorescence intensity after adding CF) showed a good linear relationship. The detection limit was 0.05 μmol/L. Besides, it was verified that the fluorescence quenching mechanism of CF on N/P-CNPs was inner filter effect and static quenching effect. The established method was used to detect the content of CF in actual samples, and the obtained results were basically consistent with the results of high performance liquid chromatography, indicating that the method had good practicability and provided a new strategy for the detection of CF.
  • 加载中
    1. [1]

      TIAN N, MA W. Acta Biochim. Biophys. Sin., 2020, 52(1):101-103.

    2. [2]

      GU M, GAO Y, CHANG P. Cancers, 2021, 13(10):2429.

    3. [3]

      RUDNO-RUDZIŃSKA J, KIELAN W, GUZIŃSKI M, PŁOCHOCKI M, KULBACKA J. Appl. Sci., 2020, 10(15):5163.

    4. [4]

      HOU X, ZHANG P, DU H, CHU W, SUN R, QIN S, TIAN Y, ZHANG Z, XU F. Front. Pharmacol., 2021, 12:725583.

    5. [5]

      JIAO Y W, LIU Q, ZHAO H B, HU X Z, SUN J L, LIU X H. Evidence-Based Complementary Altern. Med., 2021, 2021:1858974.

    6. [6]

      LI G D, LIU J G. Evidence-Based Complementary Altern. Med., 2021, 2021:2280440.

    7. [7]

      WANG Z, QIN W, ZHAI Z, HUANG L, FENG J, GUO X, LIU K, ZHANG C, WANG Z, LU G, DONG S. Int. J. Cardiovasc. Imag., 2021, 37(4):1203-1213.

    8. [8]

      MAO J, DU P, YANG H, HU H, WANG S Y, WU X, CHENG Z B. Medicine, 2020, 99(14):e19420.

    9. [9]

      VEZMAR S, SCHÜSSELER P, BECKER A, BODE U, JAEHDE U. Pediatr. Blood Cancer, 2009, 52(1):26-32.

    10. [10]

      WANG Z, MU C, KANG J, HU Z. Chromatographia, 2012, 75(19-20):1211-1215.

    11. [11]

      ZHU Z, WANG F, WANG F, XI L. J. Electroanal. Chem., 2013, 708:13-19.

    12. [12]

      MOLLAEI M, GHOREISHI S M, KHOOBI A. Measurement, 2020, 152:107362.

    13. [13]

      MOLLAEI M, GHOREISHI S M, KHOOBI A. Microchem. J., 2020, 154:104653.

    14. [14]

      WANG L, WU S, SHI T, WEI W, PAN P. Chin. J. Chem. Phys., 2016, 29(6):729-734.

    15. [15]

    16. [16]

      LI X, ZHAO S, LI B, YANG K, LAN M, ZENG L. Coord. Chem. Rev., 2021, 431:213686.

    17. [17]

    18. [18]

    19. [19]

      LAGHARI S H, MEMON N, YAR KHUHAWER M, JAHANGIR T M. Curr. Anal. Chem., 2022, 18(2):145-162.

    20. [20]

      LIN L, WANG Y, XIAO Y, LIU W. Microchim. Acta, 2019, 186(3):147.

    21. [21]

      ZHAO D, ZHANG Z X, LIU X M, ZHANG R, XIAO X C. Mater. Sci. Eng., C, 2021, 119:111468.

    22. [22]

      HALLAJ T, AZIZI N, AMJADI M. Microchem. J., 2021, 162:105865.

    23. [23]

      LIU L, MI Z, HUO X, YUAN L, BAO Y, LIU Z, FENG F. Food Chem., 2022, 368:130829.

    24. [24]

      QU J, ZHANG X, LIU Y, XIE Y, CAI J, ZHA G, JING S. Microchim Acta, 2020, 187(6):355.

    25. [25]

    26. [26]

      ZHANG Z W, LIU Y H, YAN Z Y, CHEN J Q. Sens. Actuators, B, 2018, 255:986-994.

    27. [27]

      MOLAEI M J. Anal. Methods, 2020, 12(10):1266-1287.

    28. [28]

      WANG X, ZHANG S. Colloids Surf., 2022, 649:129458.

    29. [29]

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    10. [10]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    14. [14]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    18. [18]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    19. [19]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    20. [20]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

Metrics
  • PDF Downloads(16)
  • Abstract views(3992)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return