Citation: HU Ming-Jiang,  LYU Chun-Wang,  WANG Xu-Rong,  NIU Zhe-Hui. Heterojunction LaCoO3/CeO2 Nanomaterial-based Gas Sensor for Formaldehyde Detection and Its Sensitive Mechanism[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 250-258. doi: 10.19756/j.issn.0253-3820.221395 shu

Heterojunction LaCoO3/CeO2 Nanomaterial-based Gas Sensor for Formaldehyde Detection and Its Sensitive Mechanism

  • Corresponding author: HU Ming-Jiang, hu_mingjiang@163.com
  • Received Date: 2 August 2022
    Revised Date: 26 September 2022

    Fund Project: Supported by the Science and Technology Foundation of He′nan Province, China (No. 212102210199).

  • The LaCoO3 and LaCoO3/CeO2 nanomaterials were synthesized by sol-gel method, and the heterojunction formaldehyde gas sensor was designed by depositing the samples onto the alumina ceramic tube with Au electrodes by dip-coating method. The crystalline phase and microstructure of the samples were displayed using X-ray diffraction (XRD) and scanning electron microscope (SEM), and the electrochemical characteristic of the samples were analyzed by X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) was used to calculate the work function, total density of states and energy band of LaCoO3/CeO2 heterojunction, and the sensitization mechanism of sensor was further proposed for detecting formaldehyde in detail from the adsorption process of surface oxygen, heterojunction action and LaCoO3 catalytic oxidation process. Characteristic tests of formaldehyde gas sensor were carried out by WS-30A type multifunction analyzer in gas sensor test system. At the optimal operating temperature of 150 ℃, the maximum response of LaCoO3/CeO2 sensor to 20 μg/m3 formaldehyde gas reached 60.1. Meanwhile, the response time and recovery time of LaCoO3/CeO2 sensor were reduced to 5.6 and 9.8 s, respectively. The detection limit was 1.0 μg/m3 (S/N = 6). All the results demonstrated that LaCoO3 was an excellent catalyst for improving the gas-sensitive performance of metal oxide semiconductor sensors.
  • 加载中
    1. [1]

      PAN S, ROY S, CHOUDHURY N, BEHERA P P, SIVAPRAKASAM K, RAMAKRISHNAN L, DE P. Sci. Technol. Adv. Mater., 2022, 23(1):49-63.

    2. [2]

      LU Z L, MA Z R, SONG P, WANG Q. J. Mater. Sci.:Mater Electron., 2021, 32(14):19297-19308.

    3. [3]

      WANG J L, SHANG J H, GUO Y J, JIANG Y Y, XIONG W K, LI J S, YANG X, TORUN H, FU Y Q, ZU X T. J. Mater. Sci.:Mater. Electron., 2021, 32(14):18551-18564.

    4. [4]

      MANJUNATH G, VARDHAN R V, PRAVEEN L L, NAGARAJU P, MANDAL S. Appl. Phys. A, 2021, 127(2):116.

    5. [5]

      ZHANG D, MI Q, WANG D, LI T. Sens. Actuators, B, 2021, 339:129923.

    6. [6]

      HUANG J, LIANG H, YE J, JIANG D, SUN Y, LI X, GENG Y, WANG J, QIAN Z, DU Y. Sens. Actuators, B, 2021, 346:130568.

    7. [7]

      CHANG H K, KO D S, CHO D H, KIM S, LEE H N, LEE H S, KIM H J, PARK T J, PARK Y M. Ceram. Int., 2021, 47(5):5985-5992.

    8. [8]

      ZHU L, WANG J, LIU J, XU Z, NASIR M S, CHEN X, WANG Z, SUN S, MA Q, LIU J, FENG J, LIANG J, YAN W. Sens. Actuators, B, 2022, 354:131206.

    9. [9]

      DONG Z, HU Q, LIU H, WU Y, MA Z, FAN Y, LI R, XU J, WANG X. Sens. Actuators, B, 2022, 357:131227.

    10. [10]

      AMORESI R A C, DE OLIVEIRA R C, CICHETTO L, DESIMONE P M, ALDAO C M, PONCE M A, GRACIA L, SAMBRANO J R, LONGO E, ANDRES J, SIMÕES A Z. Ceramics Int., 2022, 48(10):14014-14025.

    11. [11]

      ZHU Z H, TAO H C, FU J B, ZHOU Y T, GUO J, ZHAI C Y. Chin. Chem. Lett., 2022, 33(4):107476.

    12. [12]

      MOTAUNG D E, TSHABALALA Z P, MAKGWANE P R, MAHMOUD F A, OOSTHUIZEN D N, CUMMINGS F R, LESHABANE N, HINTSHO-MBITA N, LI X, RAY S S, SWART H C. J. Alloys Compd., 2022, 906:164317.

    13. [13]

      LI Y, CHEN N, DENG D, XING X, XIAO X, WANG Y. Sens. Actuators, B, 2017, 238:264-273.

    14. [14]

      PANDEESWARI R, JEYAPRAKASH B G. Bull. Mater. Sci., 2014, 37(6):1293-1299.

    15. [15]

      WU M, LUO M, GUO M, JIA L. ACS Sustainable. Chem. Eng., 2017, 5(12):11558-11565.

    16. [16]

      LV C, HU M, YUAN T, YAN L, CHEN H. Catal. Sci. Technol., 2022, 12(11):3670-3684.

    17. [17]

      QIN W, YUAN Z, GAO H, ZHANG R, MENG F. Sens. Actuators, B, 2021, 341:130015.

    18. [18]

      NING Z, HU R, ZHU R, GONG S, YANG Z, TANG L. Mol. Catal., 2022, 517:112024.

    19. [19]

      LV C, CHEN H, HU M, AI T, FU H. Environ. Sci. Pollut. Res., 2021, 28(28):37142-37157.

    20. [20]

      CHEN L, SONG Y, YU Q, DONG H, PAN C, WANG D, LIU J, CHEN X. Ceram. Int., 2022, 48(18):26828-26835.

    21. [21]

      BAI Y, WANG Y, YUAN W, SUN W, ZHANG G, ZHENG L, HAN X, ZHOU L. Chin. J. Chem. Eng., 2019, 27(2):379-385.

    22. [22]

    23. [23]

      DAI L, LU X B, CHU G H, HE C H, ZHAN W C, ZHOU G J. Rare Met., 2021, 40(3):555-562.

    24. [24]

      WU L, SHI X, DU H, AN Q, LI Z, XU H, RAN H. AIP Adv., 2021, 11(5):055305.

    25. [25]

      ARFAN M, HUSSAIN I, AHMAD Z, AFZAL A, SHAHID T, WATTOO A G, RAFI M, ZEB A, SHAHZAD M I, ZHENLUN S. Cryst. Res. Tech., 2022, 57(6):2100230.

    26. [26]

      HU J, CHEN X, ZHANG Y. Sens. Actuators, B, 2021, 349:130738.

    27. [27]

      ZENG X, LIU L, LV Y, ZHAO B, JU X, XU S, ZHANG J, TIAN C, SUN D, TANG X. Chem. Phys. Lett., 2020, 746:137289.

    28. [28]

      DU D, ZHENG R, CHEN X, XIANG W, ZHAO C, ZHOU B, LI R, XU H, SHU C. ACS Appl. Mater. Interfaces, 2021, 13(28):33133-33146.

    29. [29]

      XU L, GE M, ZHANG F, HUANG H, SUN Y, HE D. J. Mater. Res., 2020, 35(22):3079-3090.

    30. [30]

      KHOJIER K. Mater. Sci. Semicond. Process., 2021, 121:105283.

  • 加载中
    1. [1]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-0. doi: 10.3866/PKU.WHXB202309045

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    7. [7]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    14. [14]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    19. [19]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(16)
  • Abstract views(3576)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return