Citation: PENG Dan,  CHEN Ming-Yang,  SHI Cui-Yi,  SU Min,  CHEN Jing-Nan,  XU Rui. Synchronous Evaluation of Rapeseed Frying Oil Quality Indexes Based on Low-field Nuclear Magnetic Resonance Relaxation Properties Combined With Multiple Linear Regression[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 1042-1050. doi: 10.19756/j.issn.0253-3820.221388 shu

Synchronous Evaluation of Rapeseed Frying Oil Quality Indexes Based on Low-field Nuclear Magnetic Resonance Relaxation Properties Combined With Multiple Linear Regression

  • Corresponding author: PENG Dan, pengdantju@163.com
  • Received Date: 30 July 2022
    Revised Date: 24 February 2023

    Fund Project: Supported by the Henan Provincial Science and Technology Project (No. 212102110341), the National Natural Science Foundation of China (No. 31801501) and the Henan University of Technology Student Academic and Scientific Innovation Cultivation Project (No. GJXY202213).

  • As an important ingredient of fried food, the quality of oil is of great significance to product safety and industry development. To explore the feasibility of synchronous evaluation of oil frying quality indexes based on low-field nuclear magnetic resonance (LF-NMR) technology, rapeseed oil was taken as the research object, and the changes of quality indexes as well as the variations on LF-NMR relaxation signals during frying were systematically analyzed. Then, the correlation between the quality indexes and the relaxation properties of rapeseed oil was studied. At last, the synchronous evaluation model for rapeseed oil frying quality indexes was established by LF-NMR relaxation properties combined with multiple linear regression, and the influence of the number of independent variables on the model performance was also investigated. The experimental results showed that the acid value, polar component, p-anisidine value, carbonyl value, viscosity and the absorbance of rapeseed oil increased with the increase of frying time, while the iodine value gradually decreased. During frying, the attenuation rate of the Carr-Purcell-Meiboom-Gill (CPMG) echo attenuation curve of rapeseed oil gradually increased. In addition, the relaxation parameters (T2w, T21, T22, S22, S23) were significantly related to the frying quality indexes of rapeseed oil (Acid value, polar component, p-anisidine value, carbonyl value, viscosity, absorbance and iodine value) with p<0.05. Moreover, the determination coefficient (R2) of the LF-NMR-based synchronous prediction model for frying quality indexes of rapeseed oil was greater than 0.93, and the relative average deviation (RAD) was less than 0.15. Compared with the univariate model, except p-anisidine value, the RAD and the root mean square error of prediction (RMSEP) value of other indexes were reduced by more than 55%. It could be seen that it was feasible to synchronously detect multiple indicators of oil frying quality based on LF-NMR, and this technique could also provide the theoretical basis and technical support for rapid online monitoring of complex systems.
  • 加载中
    1. [1]

    2. [2]

      HUANG C F, LIN Y S, CHIANG Z C, LU S Y, KUO Y H, CHANG S L Y, CHAO P M. J. Nutr. Biochem., 2014, 25(5):549-556.

    3. [3]

    4. [4]

      KAIMAL A M, DHINGRA M, SINGHAL R S. J. Food Process. Preserv., 2021, 46(1):1-14.

    5. [5]

      ZRIBI A, JABEUR H, FLAMINI G, BOUAZIZ M. Int. J. Food Sci. Technol., 2016, 51(7):1594-1603.

    6. [6]

      TOUFFET M, PATSIOURA A, ZIAIIFAR A M, EVELEIGH L, VITRAC O. J. Food Eng., 2018, 224:1-16.

    7. [7]

      BANSAL G, ZHOU W, BARLOW P J, JOSHI P, NEO F L, LO H L. Food Chem., 2010, 121(2):621-626.

    8. [8]

      CHEN W A, CHIU C P, CHENG W C, HSU C K, KUO M I. J. Food Drug Anal., 2013, 21(1):58-65.

    9. [9]

      SUN Y, ZHANG M, FAN D. Ultrason. Sonochem., 2019, 51:77-89.

    10. [10]

      YANG D, WU G, LU Y, LI P, QI X, ZHANG H, WANG X, JIN Q. Food Control, 2021, 128:108195.

    11. [11]

      LI P, YANG X, LEE W J, HUANG F, WANG Y, LI Y. Food Chem., 2021, 335:127638.

    12. [12]

      WANG J, LIU C, SUN D. J. Food. Nutr. Res., 2018, 6(7):433-438.

    13. [13]

      ZHAO L, ZHANG M, WANG H, MUJUMDAR A S. Food Control, 2022, 133:108599.

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

      LEONG Y, KER P, JAMALUDIN M, NOMANBHAY S, ISMAIL A, ABDULLAH F, LOOE H, LO C. Sensors, 2018, 18(7):2175.

    23. [23]

    24. [24]

    25. [25]

      WANG C, SU G, WANG X, NIE S. J. Agric. Food Chem., 2019, 67(8):2361-2368.

    26. [26]

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    3. [3]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    4. [4]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    9. [9]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    10. [10]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    11. [11]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    18. [18]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    19. [19]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    20. [20]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

Metrics
  • PDF Downloads(16)
  • Abstract views(3180)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return