Citation: LI Jia-Xin,  LIU Meng-Ting,  LU Chao-Fen,  XU Ya-Juan,  CAO Qiu-E,  ZHOU Chuan-Hua. Microwave-assisted Synthesis of Boron and Nitrogen-doped Carbon Dots for Detection of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 211-218. doi: 10.19756/j.issn.0253-3820.221314 shu

Microwave-assisted Synthesis of Boron and Nitrogen-doped Carbon Dots for Detection of Ascorbic Acid

  • Corresponding author: ZHOU Chuan-Hua, chzhou@ynu.edu.cn
  • Received Date: 27 June 2022
    Revised Date: 14 August 2022

    Fund Project: Supported by the Youth Top-notch Talants of Yunan Ten Thousand Talents Plan, China.

  • By using ethylenediamine as carbon source and nitrogen source, and 4-hydroxyphenylboronic acid as boron dopant, the boron and nitrogen-doped carbon dots (B,N-CDs) were synthesized in one step using a microwaveassisted method. Its morphology and optical properties were characterized by transmission electron microscopy, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, and X-ray photoelectron spectroscopy, respectively. The maximum excitation and emission wavelengths of the carbon dots were 400 nm and 510 nm, respectively. By taking quinine sulfate as a reference, the relative quantum yield of the carbon dots was 9.94%. The presence of Fe3+ could quench the fluorescence of the B,N-CDs, and the fluorescence recovery took place in the presence of ascorbic acid (AA) by reducing Fe3+ to Fe2+. Based on this, a new fluorescence analysis method for detecting AA was established with good selectivity. The fluorescence recovery degree of B,N-CDs showed a good linear relationship with AA concentration in the range of 1.0-80.0 μmol/L, and the detection limit was 0.49 μmol/L (S/N=3). The method was applied to determination of AA in fruit juice with satisfactory results.
  • 加载中
    1. [1]

      WANG C, HALAWA M I, LOU B, GAO W, LI J, XU G. Analyst, 2021, 146(6):1981-1985.

    2. [2]

      JIANG Y, XIAO X, LI C, LUO Y, CHEN S, SHI G, HAN K, GU H. Anal. Chem., 2020, 92(5):3981-3989.

    3. [3]

      DONG H, ZHOU Y, ZHAO L, HAO Y, ZHANG Y, YE B, XU M. Anal. Chem., 2020, 92(22):15079-15086.

    4. [4]

    5. [5]

      LI X, ZHOU C H, ZI Q, CAO Q E. J. Electroanal. Chem., 2016, 780:321-326.

    6. [6]

      RAOOF J B, KIANI A, OJANI R, VALIOLLAHI R, RASHID-NADIMI S. J. Solid State Electrochem., 2010, 14(7):1171-1176.

    7. [7]

      LI H, ZHOU Y, DU J. J. Photochem. Photobiol. A, 2022, 429:113945.

    8. [8]

      ABE C, HIGUCHI O, MATSUMOTO A, MIYAZAWA T. Analyst, 2022, 147(12):2640-2643.

    9. [9]

      YANG X, ZHANG M, ZHANG Y, WANG N, BIAN W, CHOI M M F. Anal. Methods, 2019, 11(45):5803-5809.

    10. [10]

      SU D, HAN X, YAN X, JIN R, LI H, KONG D, GAO H, LIU F, SUN P, LU G. Anal. Chem., 2020, 92(18):12716-12724.

    11. [11]

      HAN Z, NAN D, YANG H, SUN Q, PAN S, LIU H, HU X. Sens. Actuators, B, 2019, 298:126842.

    12. [12]

      SHU Y, LU J, MAO Q X, SONG R S, WANG X Y, CHEN X W, WANG J H. Carbon, 2017, 114:324-333.

    13. [13]

      KRISHNA A S, RADHAKUMARY C, ANTONY M, SREENIVASAN K. J. Mater. Chem. B, 2014, 2(48):8626-8632.

    14. [14]

      WEN X, SHI L, WEN G, LI Y, DONG C, YANG J, SHUANG S. Sens. Actuators, B, 2016, 235:179-187.

    15. [15]

    16. [16]

      MIAO S, LIANG K, ZHU J, YANG B, ZHAO D, KONG B. Nano Today, 2020, 33:100879.

    17. [17]

      LUO X, ZHANG W, HAN Y, CHEN X, ZHU L, TANG W, WANG J, YUE T, LI Z. Food Chem., 2018, 258:214-221.

    18. [18]

      YUAN Y H, LIU Z X, LI R S, ZOU H Y, LIN M, LIU H, HUANG C Z. Nanoscale, 2016, 8(12):6770-6776.

    19. [19]

      SHAN X, CHAI L, MA J, QIAN Z, CHEN J, FENG H. Analyst, 2014, 139(10):2322-2325.

    20. [20]

      LI F, YANG D, XU H. Chem. Eur. J., 2019, 25(5):1165-1176.

    21. [21]

      SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.

    22. [22]

      DE MEDEIROS T V, MANIOUDAKIS J, NOUN F, MACAIRAN J R, VICTORIA F, NACCACHE R. J. Mater. Chem. C, 2019, 7(24):7175-7195.

    23. [23]

      LI H, XU Y, DING J, ZHAO L, ZHOU T, DING H, CHEN Y, DING L. Microchim. Acta, 2018, 185(2):104.

    24. [24]

      WANG X, QU K, XU B, REN J, QU X. J. Mater. Chem., 2011, 21(8):2445-2450.

    25. [25]

      XIAO Q, LIANG Y, ZHU F, LU S, HUANG S. Microchim. Acta, 2017, 184(7):2429-2438.

    26. [26]

      PEI Y, SONG H, LIU Y, CHENG Y, LI W, CHEN Y, FAN Y, LIU B, LU S. J. Colloid Interface Sci., 2021, 600:865-871.

    27. [27]

      CHANG Y, YUAN C, LI Y, LIU C, WU T, ZENG B, XU Y, DAI L. J. Mater. Chem. A, 2017, 5(4):1672-1678.

    28. [28]

      LIU H, LIU Z, ZHANG J, ZHI L, WU M. New Carbon Mater., 2021, 36(3):585-593.

    29. [29]

      YAN F, SHI D, ZHENG T, YUN K, ZHOU X, CHEN L. Sens. Actuators, B, 2016, 224:926-935.

    30. [30]

      MA F, LUO J, LI X, LIU S, YANG M, CHEN X. Spectrochim. Acta, Part A, 2021, 249:119343.

    31. [31]

      JEROME R, SUNDRAMOORTHY A K. J. Electrochem. Soc., 2019, 166(9):B3017-B3024.

    32. [32]

      WANG T, LUO H, JING X, YANG J, HUO M, WANG Y. Molecules, 2021, 26(5):1246.

    33. [33]

      DARABDHARA G, SHARMA B, DAS M R, BOUKHERROUB R, SZUNERITS S. Sens. Actuators, B, 2017, 238:842-851.

    34. [34]

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    5. [5]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    6. [6]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    11. [11]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    12. [12]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    17. [17]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    20. [20]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

Metrics
  • PDF Downloads(20)
  • Abstract views(2805)
  • HTML views(413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return