Citation: LYU Fu-Hui,  LI Chen-Chen,  LI Yue,  CUI Lin,  LUO Xi-Liang. Advance in Applications of Metal-organic Gel[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 160-171. doi: 10.19756/j.issn.0253-3820.221312 shu

Advance in Applications of Metal-organic Gel

  • Corresponding author: LI Chen-Chen,  CUI Lin,  LUO Xi-Liang, 
  • Received Date: 26 June 2022
    Revised Date: 20 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21605096, 21974080), the Taishan Scholar Program of Shandong Province (No. ts20110829) and the Natural Science Foundation of Shandong Province, China (No. ZR2021QB151).

  • Metal-organic gels (MOGs) are a kind of gel material formed by bridging metal ions and organic ligands via non covalent interactions. In comparison with metal-organic frameworks (MOFs) that require timeconsuming preparation, MOGs can be obtained by self-assembling through the coordination under mild conditions to form porous supramolecular structure via hydrogen bonding interactions, π-π stacking and van der Waals forces. MOGs possess good surface accessibility, high surface area, and multiple stimuli-responsive properties. Due to the easy preparation and large specific surface area, tunable structure, and abundant metal sites, MOGs are widely used in the fields of sensing and analysis, and also show unique advantages in the fields of catalysis, adsorption, energy storage and electrochromic devices. In this paper, the research and application progress of MOGs in the above fields in recent years is reviewed, and the challenges, future trends and application prospects are discussed.
  • 加载中
    1. [1]

      SUTAR P, MAJI T K. Dalton Trans., 2020, 49(23):7658-7672.

    2. [2]

      YU X, CHEN L, ZHANG M, YI T. Chem. Soc. Rev., 2014, 43(15):5346-5371.

    3. [3]

      LI Y, GUO M X, HE L, HUANG C Z, LI Y F. ACS Sustainable Chem. Eng., 2019, 7(5):5292-5299.

    4. [4]

      LIN Q, LU T T, ZHU X, WEI T B, LI H, ZHANG Y M. Chem. Sci., 2016, 7(8):5341-5346.

    5. [5]

      HE L, JIANG Z W, LI W, LI C M, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2018, 10(34):28868-28876.

    6. [6]

      ZHANG J, SU C Y. Coord. Chem. Rev., 2013, 257(7-8):1373-1408.

    7. [7]

      IMAZ I, RUBIO-MARTÍNEZ M, SALETRA W J, AMABILINO D B, MASPOCH D. J. Am. Chem. Soc., 2009, 131(51):18222-18223.

    8. [8]

      LUISI B S, ROWLAND K D, MOULTON B. Chem. Commun., 2007, 43(27):2802-2804.

    9. [9]

      XIANG S, LI L, ZHANG J, TAN X, CUI H, SHI J, HU Y, CHEN L, SU C Y, JAMES S L. J. Mater. Chem., 2012, 22(5):1862-1867.

    10. [10]

      PENG Z W, YUAN D, JIANG Z W, LI Y F. Electrochim. Acta, 2017, 238:1-8.

    11. [11]

      HOSSEINI-MONFARED H, NÄTHER C, WINKLER H, JANIAK C. Inorg. Chim. Acta, 2012, 391:75-82.

    12. [12]

      SUI J, WANG L, ZHAO W, HAO J. Chem. Commun., 2016, 52(43):6993-6996.

    13. [13]

      HE L, PENG Z W, JIANG Z W, TANG X Q, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2017, 9(37):31834-31840.

    14. [14]

      WEI S C, PAN M, LI K, WANG S, ZHANG J, SU C Y. Adv. Mater., 2014, 26(13):2072-2077.

    15. [15]

      ZHANG J, WANG X, HE L, CHEN L, SU C Y, JAMES S L. New J. Chem., 2009, 33(5):1070-1075.

    16. [16]

      SUTAR P, MAJI T K. Chem. Commun., 2016, 52(52):8055-8074.

    17. [17]

      ZHENG X, ZHANG H, REHMAN S, ZHANG P. J. Hazard. Mater., 2021, 411:125057.

    18. [18]

      LI X H, LIU Y W, LIU S M, WANG S, XU L, ZHANG Z, LUO F, LU Y, LIU S X. J. Mater. Chem. A, 2018, 6(11):4678-4685.

    19. [19]

      NGE T T, NOGI M, SUGANUMA K. J. Mater. Chem. C, 2013, 1(34):5235-5243.

    20. [20]

      CHENG Y, SUN F F, FENG Q C, ZHAO Q, ZHOU Y H. Colloid Surf., A, 2017, 522:43-50.

    21. [21]

      XU X, RANDORN C, EFSTATHIOU P, IRVINE J T S. Nat. Mater., 2012, 11(7):595-598.

    22. [22]

      SHANNON M A, BOHN P W, ELIMELECH M, GEORGIADIS J G, MARIÑAS B J, MAYES A M. Nature, 2008, 452(7185):301-310.

    23. [23]

      ZHOU X, JI Y, CAO J, XIN Z. Appl. Organometal Chem., 2018, 32(3):e4206.

    24. [24]

      YAO H, YOU X, LIN Q, WU H, WEI T, ZHANG Y. Chin. J. Chem., 2014, 32(7):607-612.

    25. [25]

      GAO Z, SUI J, XIE X, LI X, SONG S, ZHANG H, HU Y, HONG Y, WANG X, CUI J, HAO J. AIChE J., 2018, 64(10):3719-3727.

    26. [26]

      LIU Y R, HE L, ZHANG J, WANG X, SU C Y. Chem. Mater., 2009, 21(3):557-563.

    27. [27]

      LI L, XIANG S, CAO S, ZHANG J, OUYANG G, CHEN L, SU C Y. Nat. Commun., 2013, 4:1774.

    28. [28]

      WANG Z, YAN T T, CHEN G R, SHI L Y, ZHANG D S. ACS Sustainable Chem. Eng., 2017, 5(12):11637-11644.

    29. [29]

      KARABCHEVSKY A, MOSAYYEBI A, KAVOKIN A V. Light Sci. Appl., 2016, 5(11):e16164.

    30. [30]

      HAI Z, LI J, WU J, XU J, LIANG G. J. Am. Chem. Soc., 2017, 139(3):1041-1044.

    31. [31]

      ZHANG Y, CUI G, QIN N, YU X, ZHANG H, JIA X, LI X, ZHANG X, HUN X. Chem. Commun., 2020, 56(23):3421-3424.

    32. [32]

      YUAN D, ZHANG Y D, JIANG Z W, PENG Z W, HUANG C Z, LI Y F. Mater. Lett., 2018, 211:157-160.

    33. [33]

      GU D, YANG W, LIN D, QIN X, YANG Y, WANG F, PAN Q, SU Z. J. Mater. Chem. C, 2020, 8(39):13648-13654.

    34. [34]

      ZHAO T T, JIANG Z W, ZHEN S J, HUANG C Z, LI Y F. Microchim. Acta, 2019, 186(3):168.

    35. [35]

      ZHAO Y, YU J, XU G, SOJIC N, LOGET G. J. Am. Chem. Soc., 2019, 141(33):13013-13016.

    36. [36]

      LI Y, JIANG Z W, XIAO S Y, HUANG C Z, LI Y F. Anal. Chem., 2018, 90(20):12191-12197.

    37. [37]

      LI L, CHEN Y, ZHU J J. Anal. Chem., 2017, 89(1):358-371.

    38. [38]

      LIU G, MA C, JIN B K, CHEN Z, CHENG F L, ZHU J J. Anal. Chem., 2019, 91(4):3021-3026.

    39. [39]

      CUI L, WU J, JU H. ACS Appl. Mater. Interfaces, 2014, 6(18):16210-16216.

    40. [40]

      ZHANG Y, CHEN Y F, NIE Y M, YANG Z Z, YUAN R, WANG H J, CHAI Y Q. J. Anal. Chem., 2022, 94(35):12196-12203.

    41. [41]

      ZHANG Y W, LIU W S, CHEN J S, NIU H L, MAO C J, JIN B K. Sens. Actuators, B, 2020, 321:128456.

    42. [42]

      WANG C, HAN Q, LIU P, ZHANG G, SONG L, ZOU X, FU Y. ACS Sens., 2021, 6(1):252-258.

    43. [43]

      CUI L, ZHAO M, LI C, WANG Q, LUO X, ZHANG C. Anal. Chem., 2021, 93(5):2974-2981.

    44. [44]

      GUO M X, LI Y F. Spectrochim. Acta, Part A, 2019, 207:236-241.

    45. [45]

      YANG X, LIU R, ZHONG Z, HUANG H, SHAO J, XIE X, ZHANG Y, WANG W, DONG X. Chem. Eng. J., 2021, 409:127381.

    46. [46]

      LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.

    47. [47]

      LIU X, WANG Q, ZHAO H, ZHANG L, SU Y, LV Y. Analyst, 2012, 137(19):4552-4558.

    48. [48]

      WU Q, HE L, JIANG Z W, LI Y, CAO Z M, HUANG C Z, LI Y F. Biosens. Bioelectron., 2019, 145:111704.

    49. [49]

      SONG C, YANG B, YANG Y, WANG L. Sci. China Chem., 2016, 59(1):16-29.

    50. [50]

      YUAN Y, PANWAR N, YAP S H K, WU Q, ZENG S, XU J, TJIN S C, SONG J, QU J, YONG K T. Coord. Chem. Rev., 2017, 337:1-33.

    51. [51]

      CHENG Y, LI J, DENG S, SUN F. Compos. Commun., 2019, 13:75-79.

    52. [52]

      XIA W, QIU B, XIA D, ZOU R. Sci. Rep., 2013, 3:1935.

    53. [53]

      WANG X S, MA S, FORSTER P, YUAN D, ECKERT J, LÓPEZ J, MURPHY B, PARISE J, ZHOU H C. Angew. Chem., 2008, 120(38):7373-7376.

    54. [54]

      YUSHIN G, DASH R, JAGIELLO J, FISCHER J, GOGOTSI Y. Adv. Funct. Mater., 2006, 16(17):2288-2293.

    55. [55]

      SEVILLA M, FOULSTON R, MOKAYA R. Energy Environ. Sci., 2010, 3(2):223-227.

    56. [56]

      CHENG W, MORENO-GONZALEZ M, HU K, KRZYSZKOWSKI C, DVORAK D J, WEEKES D M, TAM B, BERLINGUETTE C P. iScience, 2018, 10:80-86.

    57. [57]

      MORTIMER R J. Chem. Soc. Rev., 1997, 26(3):147-156.

    58. [58]

      WANG Y, WANG S, WANG X, ZHANG W, ZHENG W, ZHANG Y M, ZHANG S X A. Nat. Mater., 2019, 18(12):1335-1342.

    59. [59]

      FAN H, LI K, LIU X, XU K, SU Y, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(25):28451-28460.

    60. [60]

      BAI Z, LI R, LI K, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(38):42955-42961.

  • 加载中
    1. [1]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    6. [6]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    7. [7]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    8. [8]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    9. [9]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    10. [10]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    11. [11]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    15. [15]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(53)
  • Abstract views(3763)
  • HTML views(529)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return