Citation:
LYU Fu-Hui, LI Chen-Chen, LI Yue, CUI Lin, LUO Xi-Liang. Advance in Applications of Metal-organic Gel[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(2): 160-171.
doi:
10.19756/j.issn.0253-3820.221312
-
Metal-organic gels (MOGs) are a kind of gel material formed by bridging metal ions and organic ligands via non covalent interactions. In comparison with metal-organic frameworks (MOFs) that require timeconsuming preparation, MOGs can be obtained by self-assembling through the coordination under mild conditions to form porous supramolecular structure via hydrogen bonding interactions, π-π stacking and van der Waals forces. MOGs possess good surface accessibility, high surface area, and multiple stimuli-responsive properties. Due to the easy preparation and large specific surface area, tunable structure, and abundant metal sites, MOGs are widely used in the fields of sensing and analysis, and also show unique advantages in the fields of catalysis, adsorption, energy storage and electrochromic devices. In this paper, the research and application progress of MOGs in the above fields in recent years is reviewed, and the challenges, future trends and application prospects are discussed.
-
Keywords:
- Metal-organic gels,
- Sensor,
- Catalysis,
- Application,
- Review
-
-
-
[1]
SUTAR P, MAJI T K. Dalton Trans., 2020, 49(23):7658-7672.
-
[2]
YU X, CHEN L, ZHANG M, YI T. Chem. Soc. Rev., 2014, 43(15):5346-5371.
-
[3]
LI Y, GUO M X, HE L, HUANG C Z, LI Y F. ACS Sustainable Chem. Eng., 2019, 7(5):5292-5299.
-
[4]
LIN Q, LU T T, ZHU X, WEI T B, LI H, ZHANG Y M. Chem. Sci., 2016, 7(8):5341-5346.
-
[5]
HE L, JIANG Z W, LI W, LI C M, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2018, 10(34):28868-28876.
-
[6]
ZHANG J, SU C Y. Coord. Chem. Rev., 2013, 257(7-8):1373-1408.
-
[7]
IMAZ I, RUBIO-MARTÍNEZ M, SALETRA W J, AMABILINO D B, MASPOCH D. J. Am. Chem. Soc., 2009, 131(51):18222-18223.
-
[8]
LUISI B S, ROWLAND K D, MOULTON B. Chem. Commun., 2007, 43(27):2802-2804.
-
[9]
XIANG S, LI L, ZHANG J, TAN X, CUI H, SHI J, HU Y, CHEN L, SU C Y, JAMES S L. J. Mater. Chem., 2012, 22(5):1862-1867.
-
[10]
PENG Z W, YUAN D, JIANG Z W, LI Y F. Electrochim. Acta, 2017, 238:1-8.
-
[11]
HOSSEINI-MONFARED H, NÄTHER C, WINKLER H, JANIAK C. Inorg. Chim. Acta, 2012, 391:75-82.
-
[12]
SUI J, WANG L, ZHAO W, HAO J. Chem. Commun., 2016, 52(43):6993-6996.
-
[13]
HE L, PENG Z W, JIANG Z W, TANG X Q, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2017, 9(37):31834-31840.
-
[14]
WEI S C, PAN M, LI K, WANG S, ZHANG J, SU C Y. Adv. Mater., 2014, 26(13):2072-2077.
-
[15]
ZHANG J, WANG X, HE L, CHEN L, SU C Y, JAMES S L. New J. Chem., 2009, 33(5):1070-1075.
-
[16]
SUTAR P, MAJI T K. Chem. Commun., 2016, 52(52):8055-8074.
-
[17]
ZHENG X, ZHANG H, REHMAN S, ZHANG P. J. Hazard. Mater., 2021, 411:125057.
-
[18]
LI X H, LIU Y W, LIU S M, WANG S, XU L, ZHANG Z, LUO F, LU Y, LIU S X. J. Mater. Chem. A, 2018, 6(11):4678-4685.
-
[19]
NGE T T, NOGI M, SUGANUMA K. J. Mater. Chem. C, 2013, 1(34):5235-5243.
-
[20]
CHENG Y, SUN F F, FENG Q C, ZHAO Q, ZHOU Y H. Colloid Surf., A, 2017, 522:43-50.
-
[21]
XU X, RANDORN C, EFSTATHIOU P, IRVINE J T S. Nat. Mater., 2012, 11(7):595-598.
-
[22]
SHANNON M A, BOHN P W, ELIMELECH M, GEORGIADIS J G, MARIÑAS B J, MAYES A M. Nature, 2008, 452(7185):301-310.
-
[23]
ZHOU X, JI Y, CAO J, XIN Z. Appl. Organometal Chem., 2018, 32(3):e4206.
-
[24]
YAO H, YOU X, LIN Q, WU H, WEI T, ZHANG Y. Chin. J. Chem., 2014, 32(7):607-612.
-
[25]
GAO Z, SUI J, XIE X, LI X, SONG S, ZHANG H, HU Y, HONG Y, WANG X, CUI J, HAO J. AIChE J., 2018, 64(10):3719-3727.
-
[26]
LIU Y R, HE L, ZHANG J, WANG X, SU C Y. Chem. Mater., 2009, 21(3):557-563.
-
[27]
LI L, XIANG S, CAO S, ZHANG J, OUYANG G, CHEN L, SU C Y. Nat. Commun., 2013, 4:1774.
-
[28]
WANG Z, YAN T T, CHEN G R, SHI L Y, ZHANG D S. ACS Sustainable Chem. Eng., 2017, 5(12):11637-11644.
-
[29]
KARABCHEVSKY A, MOSAYYEBI A, KAVOKIN A V. Light Sci. Appl., 2016, 5(11):e16164.
-
[30]
HAI Z, LI J, WU J, XU J, LIANG G. J. Am. Chem. Soc., 2017, 139(3):1041-1044.
-
[31]
ZHANG Y, CUI G, QIN N, YU X, ZHANG H, JIA X, LI X, ZHANG X, HUN X. Chem. Commun., 2020, 56(23):3421-3424.
-
[32]
YUAN D, ZHANG Y D, JIANG Z W, PENG Z W, HUANG C Z, LI Y F. Mater. Lett., 2018, 211:157-160.
-
[33]
GU D, YANG W, LIN D, QIN X, YANG Y, WANG F, PAN Q, SU Z. J. Mater. Chem. C, 2020, 8(39):13648-13654.
-
[34]
ZHAO T T, JIANG Z W, ZHEN S J, HUANG C Z, LI Y F. Microchim. Acta, 2019, 186(3):168.
-
[35]
ZHAO Y, YU J, XU G, SOJIC N, LOGET G. J. Am. Chem. Soc., 2019, 141(33):13013-13016.
-
[36]
LI Y, JIANG Z W, XIAO S Y, HUANG C Z, LI Y F. Anal. Chem., 2018, 90(20):12191-12197.
-
[37]
LI L, CHEN Y, ZHU J J. Anal. Chem., 2017, 89(1):358-371.
-
[38]
LIU G, MA C, JIN B K, CHEN Z, CHENG F L, ZHU J J. Anal. Chem., 2019, 91(4):3021-3026.
-
[39]
CUI L, WU J, JU H. ACS Appl. Mater. Interfaces, 2014, 6(18):16210-16216.
-
[40]
ZHANG Y, CHEN Y F, NIE Y M, YANG Z Z, YUAN R, WANG H J, CHAI Y Q. J. Anal. Chem., 2022, 94(35):12196-12203.
-
[41]
ZHANG Y W, LIU W S, CHEN J S, NIU H L, MAO C J, JIN B K. Sens. Actuators, B, 2020, 321:128456.
-
[42]
WANG C, HAN Q, LIU P, ZHANG G, SONG L, ZOU X, FU Y. ACS Sens., 2021, 6(1):252-258.
-
[43]
CUI L, ZHAO M, LI C, WANG Q, LUO X, ZHANG C. Anal. Chem., 2021, 93(5):2974-2981.
-
[44]
GUO M X, LI Y F. Spectrochim. Acta, Part A, 2019, 207:236-241.
-
[45]
YANG X, LIU R, ZHONG Z, HUANG H, SHAO J, XIE X, ZHANG Y, WANG W, DONG X. Chem. Eng. J., 2021, 409:127381.
-
[46]
LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.
-
[47]
LIU X, WANG Q, ZHAO H, ZHANG L, SU Y, LV Y. Analyst, 2012, 137(19):4552-4558.
-
[48]
WU Q, HE L, JIANG Z W, LI Y, CAO Z M, HUANG C Z, LI Y F. Biosens. Bioelectron., 2019, 145:111704.
-
[49]
SONG C, YANG B, YANG Y, WANG L. Sci. China Chem., 2016, 59(1):16-29.
-
[50]
YUAN Y, PANWAR N, YAP S H K, WU Q, ZENG S, XU J, TJIN S C, SONG J, QU J, YONG K T. Coord. Chem. Rev., 2017, 337:1-33.
-
[51]
CHENG Y, LI J, DENG S, SUN F. Compos. Commun., 2019, 13:75-79.
-
[52]
XIA W, QIU B, XIA D, ZOU R. Sci. Rep., 2013, 3:1935.
-
[53]
WANG X S, MA S, FORSTER P, YUAN D, ECKERT J, LÓPEZ J, MURPHY B, PARISE J, ZHOU H C. Angew. Chem., 2008, 120(38):7373-7376.
-
[54]
YUSHIN G, DASH R, JAGIELLO J, FISCHER J, GOGOTSI Y. Adv. Funct. Mater., 2006, 16(17):2288-2293.
-
[55]
SEVILLA M, FOULSTON R, MOKAYA R. Energy Environ. Sci., 2010, 3(2):223-227.
-
[56]
CHENG W, MORENO-GONZALEZ M, HU K, KRZYSZKOWSKI C, DVORAK D J, WEEKES D M, TAM B, BERLINGUETTE C P. iScience, 2018, 10:80-86.
-
[57]
MORTIMER R J. Chem. Soc. Rev., 1997, 26(3):147-156.
-
[58]
WANG Y, WANG S, WANG X, ZHANG W, ZHENG W, ZHANG Y M, ZHANG S X A. Nat. Mater., 2019, 18(12):1335-1342.
-
[59]
FAN H, LI K, LIU X, XU K, SU Y, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(25):28451-28460.
-
[60]
BAI Z, LI R, LI K, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(38):42955-42961.
-
[1]
-
-
-
[1]
Wenjuan SHI , Yuke LU , Xiuyuan LI , Lei HOU , Yaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220
-
[2]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[3]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[4]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[5]
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
-
[6]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[7]
Cheng-an Tao , Jian Huang , Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132
-
[8]
Zian Fang , Qianqian Wen , Yidi Wang , Hongxia Ouyang , Qi Wang , Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032
-
[9]
Yongxin LIU , Xingchen LI , Hongjia LIU , Danni LI , Tao ZHANG , Xi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169
-
[10]
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
-
[11]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[12]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[13]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[14]
Laiying Zhang , Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015
-
[15]
Jingjing Liu , Aoqi Wei , Hao Zhang , Shuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185
-
[16]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[17]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[18]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[19]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[20]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[1]
Metrics
- PDF Downloads(53)
- Abstract views(3764)
- HTML views(529)
Login In
DownLoad: