Citation: ZHU Feng-Li,  YANG Ling,  WANG Ya-Hu,  TAN Hai-Hu. Preparation of Doped Carbon Quantum Dots and Its Application in Detection of Heavy Metal Ions[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 22-33. doi: 10.19756/j.issn.0253-3820.221308 shu

Preparation of Doped Carbon Quantum Dots and Its Application in Detection of Heavy Metal Ions

  • Corresponding author: TAN Hai-Hu, haihutan@163.com
  • Received Date: 22 June 2022
    Revised Date: 25 September 2022

    Fund Project: Support by the National Natural Science Foundation of China (No.51874129), the China Postdoctoral Science Foundation (No.2021M693549), the Natural Science Foundation of Hunan Province (Nos.2021JJ40178, 2021JJ40179, 2022JJ50061) and the Scientific Research Fund of Hunan Provincial Education Department (Nos.18A260, 20B169, 20B181, 21C0405).

  • In recent years, carbon quantum dots (CQDs) have attracted much attention due to their unique fluorescence properties, cheap and abundant raw materials, green and convenient synthesis process, good water solubility and biocompatibility, etc. Numerous researches have shown that the fluorescence intensity of CQDs can be enhanced or reduced once the CQDs combine with specific metal ions. Therefore, there is a good application prospect of CQDs to construct the metal ion fluorescence chemosensor. However, the performance of conventional CQDs-based probe with insufficient fluorescence intensity, poor sensitivity and limited selectivity hamper their application in the detection of heavy metal ions. Doping heteroatoms can enrich the energy level structure of CQDs by adjusting the charge density and spin density of carbon atoms, thus enhancing the fluorescence intensity of CQDs. Besides, the doped heteroatoms can also introduce abundant function groups to CQDs and provide more active sites to capture heavy metal ions, which is beneficial for the amplification of fluorescence detection signal. In this paper, the preparation of atom-doped CQDs of nitrogen, sulfur, phosphorus, zinc and copper and their application in the detection of heavy metal ions are reviewed, and the influence of atom doping on the performance of CQDs, the detection mechanism and the application effect are analyzed. On this basis, the future research direction in this field is discussed.
  • 加载中
    1. [1]

      EL ZRELLI R, YACOUBI L, WAKKAF T, CASTET S, GREGOIRE M, MANSOUR L, COURJAULT-RADE P, RABAOUI L. Mar. Pollut. Bull., 2021, 169:112512.

    2. [2]

      YUAN S G, ZHANG W Q, LI W Y, LI Z H, WU M S, SHAN B Q. Bull. Environ. Contam. Toxicol., 2022, 109(5):691-697

    3. [3]

      IRANDOOST F, AGAH H, ESLAMI Z, ROSSI L, COLLOCA F, KHALILI A, COSTANTINI M L. Mar. Pollut. Bull., 2021, 173(B):113041.

    4. [4]

      DUAN B L, FENG Q. Int. J. Environ. Res. Public Health, 2022, 19(7):4236.

    5. [5]

      ZHANG J B, PENG D M, ZHANG P, RONG Y M, LI F, ZHAO L R, CHEN C L. Water, 2022, 14(16):2523.

    6. [6]

      GAO S K, ZHANG R, ZHANG H, ZHANG S. Environ. Pollut., 2022, 297:118649.

    7. [7]

      LI B, DAO J R, ZHU R Y, HE H, MENG X Q, HAN F X. Environ. Chem., 2021, 40(6):1808-1818.

    8. [8]

      HE B H, WANG W, GENG R Y, DING Z, LUO D X, QIU J L, ZHENG G D, FAN Q H. Ecotoxicol. Environ. Saf., 2020, 207:111234.

    9. [9]

      VINODKUMAR T, VINEETHKUMAR V, VISHNU C V, SAYOOJ V V, PRAKASH V. Radiat. Prot. Environ., 2022, 44(3):152-160.

    10. [10]

      WITKOWSKA D, SLOWIK J, CHILICKA K. Molecules, 2021, 26(19):6060.

    11. [11]

      GARZA-LOMBO C, POSADAS Y, QUINTANAR L, GONSEBATT M E, FRANCO R. Antioxid. Redox Signaling, 2018, 28(18):1669-1703.

    12. [12]

      LIN T J, YEN K T, CHEN C F, YAN S T, SU K W, CHIANG Y L. Sensors, 2022, 22(8):3009.

    13. [13]

      SOYLAK M, ELZAIN HASSAN AHMED H, OZALP O. Food Chem., 2022, 388:133002.

    14. [14]

      REN J, ZHAO Y R, YU K Q. Comput. Electron. Agric., 2022, 197:106986.

    15. [15]

      BOIVIN F, VALLIERES S, FOURMAUX S, PAYEUR S, ANTICI P. New J. Phys., 2022, 24(5):053018.

    16. [16]

      VON WUTHENAU K, MULLER M S, CVANCAR L, OEST M, FISCHER M. J. Agric. Food Chem., 2022, 70(16):5237-5244.

    17. [17]

      ARDALANI M, SHAMSIPUR M, BESHARATI-SEIDANI A. J. Electroanal. Chem., 2020, 879:114788.

    18. [18]

      SABBIONI E, MANENTI S, MAGARINI R, PETRARCA C, POMA G, ZACCARIELLO G, BACK M, BENEDETTI A, DI G M, MIGNINI E, PIROTTA G, RISCASSI R, SALVINI A, GROPPI F. Anal. Chim Acta, 2022, 1200:339601.

    19. [19]

    20. [20]

      HUANG Y F, ZHANG Y B, HUO F J, WEN Y, YIN C X. Sci. China:Chem., 2020, 63(12):1742-1755.

    21. [21]

      WU X Y, MA C H, LIU J C, LIU Y S, LUO S, XU M C, WU P, LI W, LIU S X. Microchem. J., 2019, 7(23):18801-18809.

    22. [22]

      DUAN Y P, LI Z R, LIU X J, PANG H F, HUANG L X, SUN X Y, SHI Y P. J. Alloys Compd., 2022, 921:166088.

    23. [23]

    24. [24]

    25. [25]

      GUPTA S K, SUDARSHAN K, KADAM R M. Mater. Today Commun., 2021, 27:102277.

    26. [26]

      SAHU A, KUMAR D. J. Alloys Compd., 2022, 924:166508.

    27. [27]

      SHEN L, ZHOU S, HUANG F, ZHOU H, ZHANG H, WANG S, ZHOU S. Nanotechnology, 2021, 33(11):115602.

    28. [28]

      ZHANG X S, LI C H, ZHAO S L, PANG H Y, HAN Y, LUO X L, TANG W Z, LI Z H. Opt. Mater., 2020, 110:110461.

    29. [29]

      KUMAR U, LI Y N, DENG Z Y, CHIANG P C, YADAV B C, WU C H. J. Alloys Compd., 2022, 926:166828.

    30. [30]

      YAN J F, FU Q B, ZHANG S K, LIU Y, SHI X B, HOU J Y, DUAN J L, AI S Y. Spectrochim. Acta, Part A, 2022, 282:121706.

    31. [31]

      ZHANG X M, LIN Y X, GILLIES R J. J. Nucl. Med., 2010, 51(8):1167-1170.

    32. [32]

      JIANG K, SUN S, ZHANG L, LU Y, WU A G, CAI C Z, LIN H W. Angew. Chem., Int. Ed., 2015, 54(18):5360-5363.

    33. [33]

      LIU M L, YANG L, LI R S, CHEN B B, LIU H, HUANG C Z. Green Chem., 2017, 19(15):3611-3617.

    34. [34]

      ESSNER J B, KIST J A, POLO-PARADA L, BAKER G A. Chem. Mater., 2018, 30(6):1878-1887.

    35. [35]

      XU X Y, ROBERT R, GU Y L, HARRY J P, LATHA G, KYLE R, WALTER A S. J. Am. Chem. Soc., 2004, 126(40):12736-12737.

    36. [36]

      ZHU J T, CHU H Y, SHEN J W, WANG C Z, WEI Y M. Opt. Mater., 2021, 114:110941.

    37. [37]

      MARY A A, KIRAN M D, HARI G, KRISHNAN A, JAYAN J S, SARITHA A. Mater. Today:Proc., 2020, 26:716-719.

    38. [38]

      HUA X T, LI Y X, XU Y W, GAN Z Y, ZOU X B, SHI J Y, HUANG X W, LI Z H, LI Y H. Food Chem., 2021, 339:127775.

    39. [39]

      ZULFAJRI M, GEDDA G, CHANG C J, CHANG Y P, HUANG G G. ACS Omega, 2019, 4(13):15382-15392.

    40. [40]

      NAGARAJ M, RAMALINGAM S, MURUGAN C, ALDAWOOD S, JIN J O, CHOI I, KIM M. Environ. Res., 2022, 212(B):113273.

    41. [41]

      ZHAO S Y, SONG X P, CHAI X Y, ZHAO P T, HE H, LIU Z W. J. Cleaner Prod., 2020, 263:121561.

    42. [42]

      SINGH H, BAMRAH A, KHATRI M, BHARDWAJ N. Mater. Today:Proc., 2020, 28:1891-1894.

    43. [43]

      WAREING T C, GENTILE P, PHAN A N. ACS Nano, 2021, 15(10):15471-15501.

    44. [44]

      WU F S, YANG M Q, ZHANG H, ZHU S Z, ZHU X J, WANG K. Opt. Mater., 2018, 77:258-263.

    45. [45]

    46. [46]

      WANG R C, LU J T, LIN Y C. J. Alloys Compd., 2020, 813:152201.

    47. [47]

      DU F Y, CHENG Z F, TAN W, SUN L S, RUAN G H. Spectrochim. Acta, Part A, 2020, 226:117602.

    48. [48]

      OMER K M, HASSAN A Q. Microchim. Acta, 2017, 184(7):2063-2071.

    49. [49]

      SU H F, LIAO Y, WU F S, SUN X Z, LIU H J, WANG K, ZHU X J. Colloids Surf., B, 2018, 170:194-200.

    50. [50]

      LIU Y, WEI J F, YAN X, ZHAO M, GUO C Z, XU Q. Chin. Chem. Lett., 2021, 32(2):861-865.

    51. [51]

      KURUKAVAK C K, YILMAZ T, CETIN S, ALQADASI M M, AL-KHAWLANY K M, KUS M. Microelectron. Eng., 2021, 235:111465.

    52. [52]

      WANG Z H, ZHANG L, HAO Y M, DONG W J, LIU Y, SONG S M, SHUANG S M, DONG C, GONG X J. Anal. Chim. Acta, 2021, 1144:1-13.

    53. [53]

      SUN W, LIU Q Y, DA X N, HONG R J, TAO C X, WANG Q, LIN H, HAN Z X, ZHANG D W. Chem. Phys. Lett., 2022, 803:139863.

    54. [54]

      KALAIYARASAN G, HEMLATA C, JOSEPH J. ACS Omega, 2019, 4(1):1007-1014.

    55. [55]

      QI H X, ZHAI Z Z, DONG X P, ZHANG P D. Spectrochim. Acta, Part A, 2022, 279:121456.

    56. [56]

      SHAH H, XIN Q, JIA X R, GONG J R. Arabian J. Chem., 2019, 12(7):1083-1091.

    57. [57]

      PANG Z Z, FU Y J, YU H L, LIU S W, YU S T, LIU Y X, WU Q, LIU Y, NIE G K, XU H F, NIE S X, YAO S Q. Ind. Crops Prod., 2022, 183:114957.

    58. [58]

      ZHANG S R, CAI S K, WANG G Q, CUI J Z, GAO C Z. J. Mol. Struct., 2021, 1246:131173.

    59. [59]

      NGUYEN K G, BARAGAU I A, GROMICOVA R, NICOLAEV A, THOMSON S A J, RENNIE A, POWER N P, SAJJAD M T, KELLICI S. Sci. Rep., 2022, 12(1):13806.

    60. [60]

      CHEN G W, SONG F L, XIONG X Q, PENG X J. Ind. Eng. Chem. Res., 2013, 52(33):11228-11245.

    61. [61]

      NEMATI F, HOSSEINI M, ZARE-DORABEI R, SALEHNIA F, GANJALI M R. Sens. Actuators, B, 2018, 273:25-34.

    62. [62]

      CHENG N Y, JIANG P, LIU Q, TIAN J Q, ASIRI A M, SUN X P. Analyst, 2014, 139(20):5065-5068.

    63. [63]

      RAFIQ S, SCHOLES G D. J. Am. Chem. Soc., 2019, 141(2):708-722.

    64. [64]

    65. [65]

      GU S Y, HSIEH C T, ASHRAF G Y, CHANG J K, LI J, LI J L, ZHANG H A, GUO Q, LAU K C, PANDEY R. J. Mater. Chem. C, 2019, 7(18):5468-5476.

    66. [66]

      LIANG Y, SHEN Y F, LIU C L, REN X Y. J. Lumin., 2018, 197:285-290.

    67. [67]

      YIN C H, CHEN L G, NIU N. Anal. Bioanal. Chem., 2021, 413(20):5239-5249.

    68. [68]

      WANG Z, LIU Q H, LENG J P, LIU H Y, ZHANG Y X, WANG C D, AN W Q, BAO C N, LEI H. J. Saudi Chem. Soc., 2021, 25(12):101373.

    69. [69]

      YANG J L, CHEN L, JIANG Q Q, YUE X T. Fullerenes, Nanotubes, Carbon Nanostruct., 2018, 27(3):233-239.

    70. [70]

      DUFAULT R, SCHNOLL R, LUKIW W J, LEBLANC B, CORNETT C, PATRICK L, WALLINGA D, GILBERT S G, CRIDER R. Behav. Brain Funct., 2018, 14:3.

    71. [71]

      TAN A Z, YANG G H, WAN X J. Spectrochim. Acta, Part A, 2021, 253:119583.

    72. [72]

      DENG X Y, FENG Y L, LI H R, DU Z W, TENG Q, WANG H J. Particuology, 2018, 41:94-100.

    73. [73]

      YU C H, QIN D M, JIANG X H, ZHENG X F, DENG B Y. J. Pharm. Biomed. Anal., 2021, 192:113673.

    74. [74]

      LIAO S, HUANG X Q, YANG H, CHEN X Q. Anal. Bioanal. Chem., 2018, 410(29):7701-7710.

    75. [75]

      CAO G H, WEI Z F, YIN Y H, FU L G, LIU Y K, QIU S L, ZHANG B Q. Chin. Phys. B, 2021, 30(9):097802.

    76. [76]

      WANG C J, WANG Y B, SHI H X, YAN Y J, LIU E Z, HU X Y, FAN J. Mater. Chem. Phys., 2019, 232:145-151.

    77. [77]

      ZHOU J, SHAN X Y, MA J J, GU Y M, QIAN Z S, CHEN J R, FENG H. RSC Adv., 2014, 4(11):5465-5468.

    78. [78]

      ZHI B, GALLAGHER M J, FRANK B P, LYONS T Y, QIU T A, DA J, MENSCH A C, HAMERS R J, ROSENZWEIG Z, FAIRBROTHER D H, HAYNES C L. Carbon, 2018, 129:438-449.

    79. [79]

      YANG F, HE X, WANG C X, CAO Y, LI Y, YAN L N, LIU M M, LV M Z, YANG Y N, ZHAO X, LI Y F. Appl. Surf. Sci., 2018, 448:589-598.

    80. [80]

      BADARAU A, DENNISON C. J. Am. Chem. Soc., 2011, 133(9):2983-2988.

    81. [81]

      KALAIYARASAN G, JOSEPH J, KUMAR P. ACS Omega, 2020, 5(35):22278-22288.

    82. [82]

      MENG A, ZHANG Y, WANG X H, XU Q H, LI Z J, SHENG L Y, YAN L J. Colloids Surf. A, 2022, 648:129150.

    83. [83]

      JO M H, KIM K H, AHN H J. Chem. Eng. J., 2022, 445:136826.

    84. [84]

      WANG J H, LI X R, DENG Y Y, CHEN S H, LIANG W F, ZHANG L X, WEI X Y, GAO S Y, WAN Y. Appl. Surf. Sci., 2022, 599:154029.

    85. [85]

      XU Q, CAI W, ZHANG M R, SU R G, YE Y C, LI Y Q, ZHANG L P, GUO Y J, YU Z Q, LI S Y, LIN X, CHEN Y S, LUO Y, STREET J, XU M. RSC Adv., 2018, 8(31):17254-17262.

    86. [86]

      QIAN Z S, SHAN X Y, CHAI L J, MA J J, CHEN J R, FENG H. ACS Appl. Mater. Interfaces, 2014, 6(9):6797-6805.

    87. [87]

      HE H, YANG Y N, LI J F, LAI X F, CHEN X F, WANG L, ZHANG W T, HUANG Y, ZHANG P C. Mater. Sci. Eng. B, 2021, 264:114955.

    88. [88]

      SUN S J, GUAN Q W, LIU Y, WEI B, YANG Y Y, YU Z Q. Chin. Chem. Lett., 2019, 30(5):1051-1054.

    89. [89]

      XU Q, WEI J F, WANG J L, LIU Y, LI N, CHEN Y S, GAO C, ZHANG W W, SREEPRASED T S. RSC Adv., 2016, 6(34):28745-28750.

    90. [90]

      MARKOVIĆ Z M, LABUDOVÁ M, DANKO M, MATIJAŠEVIĆ D, MIČUŠÍK M, NÁDAŽDY V, KOVÁČOVÁ M, KLEINOVÁ A, ŠPITALSKY Z, PAVLOVIĆ V, MILIVOJEVIĆ D D, MEDIĆ M, TODOROVIĆ M B M. Microchem. J., 2020, 8(43):16327-16338.

    91. [91]

      DEWANGAN L, CHAWRE Y, KORRAM J, KARBHAL I, NAGWANSHI R, JAIN V, SATNAMI M L. Microchem. J., 2022, 182:107867.

    92. [92]

      SEFID-SEFIDEHKHAN Y, JOUYBAN A, RAHIMPOUR E. Microchem. J., 2022, 181:107753.

    93. [93]

      PAN J, DENG H W, DU Z Y, TIAN K, ZHANG J F. Environ. Sci. Pollut. Res. Int., 2022, 29(19):28984-28994.

    94. [94]

      LOU Y B, ZHAO Y X, CHEN J X, ZHU J J. J. Mater. Chem. C, 2014, 2(4):595-613.

    95. [95]

      SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.

    96. [96]

      DENG Y F, QIAN J, ZHOU Y H, LU F. Chemistselect, 2020, 5(17):5306-5311.

    97. [97]

      ZHAO B, TAN Z A. Adv. Sci., 2021, 8(7):2001977.

    98. [98]

      LU H Z, YU C W, XU S F. Sens. Actuators, B, 2019, 288:691-698.

    99. [99]

      LI J Z, LIU J H, XU L Q, CHEN J C. Polym. Int., 2017, 66(1):92-97.

    100. [100]

      KALYTCHUK S, WANG Y, POLAKOVA K, ZBORIL R. ACS Appl. Mater. Interfaces, 2018, 10(35):29902-29908.

    101. [101]

      DONG J X, LI B Q, XIAO J, LIU G X, VLADIMIR B, FENG Y J, JIA D C, ASLAN Y T, ZHOU Y. Carbon, 2022, 199:151-160.

    102. [102]

      JOSEPH F O, JACINTA F W, THOMAS R G, RACHEL A C, CARA M D. ACS Appl. Mater. Interfaces, 2022, 14(31):35755-35768.

    103. [103]

      ZHANG H Y, LI Q Y, WANG S, YU X W, WANG B L, CHEN G R, REN L, LI J Y, JIN M X, YU J H. Nano Res., 2022:DOI:10.1007/S12274-022-4829-x.

    104. [104]

      CHENG C G, XING M, WU Q L. J. Alloys Compd., 2019, 790:221-227.

    105. [105]

      MA Y J, XU G H, WEI F D, CEN Y, MA Y S, SONG Y Y, XU X M, SHI M L, MUHAMMAD S, HU Q. J. Mater. Chem. C, 2017, 5(33):8566-8571.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    3. [3]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    4. [4]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    9. [9]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    12. [12]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    13. [13]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    15. [15]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    18. [18]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    19. [19]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(61)
  • Abstract views(1986)
  • HTML views(393)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return