Citation: FAN Bo,  LIU Lan,  WU Qian,  ZHENG Zi-Liang,  XING Yang,  ZHANG Juan,  ZHANG Rui-Ping. Biomineralization-inspired Synthesis of Lactoferrin-mediated Copper Sulfide Nanoparticle and Its Photothermal Ablation for Tumor Therapy[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 239-249. doi: 10.19756/j.issn.0253-3820.221293 shu

Biomineralization-inspired Synthesis of Lactoferrin-mediated Copper Sulfide Nanoparticle and Its Photothermal Ablation for Tumor Therapy

  • Corresponding author: ZHANG Rui-Ping, zrp_7142@sxmu.edu.cn
  • Received Date: 4 June 2022
    Revised Date: 14 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 82211001138, 82071987, 81771907), the Youth Scientific Research Project of Shanxi Province (No. 20210302124703) and the Foundation for PhD of Shanxi Medical University (No 03201620).

  • Photothermal agents with strong light absorption in the second near-infrared (NIR-II) region are strongly desired for successful photothermal therapy (PTT). In this work, the lactoferrin-mediated copper sulfide nanoparticles (CuS@Lf NPs) were successfully synthesized by biomineralization strategy. The uniform CuS@Lf NPs showed strong NIR-Ⅱ absorbance in the wavelength range of 1000-1300 nm and possessed high photothermal conversion efficiency, which could be applied in antitumor therapy under 1064 nm laser irradiation. Moreover, lactoferrin (Lf) not only improved the solubility of CuS nanoparticles, but also enhanced their biocompatibility and tumor targeting. Meanwhile, the antioxidant effect of Lf could eliminate oxidative damage after photothermal therapy and reduce tumor recurrence. Herein, the U87 glioma model with high expression of low density lipoprotein receptor associated protein (LRP-1) was used to study the antitumor effects of CuS@Lf NPs in vivo and in vitro. As a result, CuS@Lf NPs displayed effective photothermal tumor ablation, which provided a foundation for NIR-Ⅱ based photothermal therapy in antitumor application.
  • 加载中
    1. [1]

      CAO Y, WU T, ZHANG K, MENG X, DAI W, WANG D, DONG H, ZHANG X. ACS Nano, 2019, 13(2):1499-1510.

    2. [2]

      WANG F, ZHU J, WANG Y, LI J. Nanomaterials, 2022, 12(10):1656.

    3. [3]

      CAI H, DAI X, GUO X, ZHANG L, CAO K, YAN F, JI B, LIU Y. Acta Biomater., 2021, 127:276-286.

    4. [4]

      ZHOU T, XIE S, ZHOU C, CHEN Y, LI H, LIU P, JIANG R, HANG L, JIANG G. ACS Appl. Bio Mater., 2022, 5(8):3841-3849.

    5. [5]

      JIANG A, LIU Y, MA L, MAO F, LIU L, ZHAI X, ZHOU J. ACS Appl. Mater. Interfaces, 2019, 11(7):6820-6828.

    6. [6]

      LIU X, SU Q, SONG H, SHI X, ZHANG Y, ZHANG C, HUANG P, DONG A, KONG D, WANG W. Biomaterials, 2021, 275:120921.

    7. [7]

      XIE X, GAO W, HAO J, WU J, CAI X, ZHENG Y. J. Nanobiotechnol., 2021, 19(1):126.

    8. [8]

      ROSA L, CUTONE A, LEPANTO M, PAESANO R, VALENTI P. Int. J. Mol. Sci., 2017, 18(9):1985.

    9. [9]

    10. [10]

      KANWAR J, ROY K, PATEL Y, ZHOU S F, SINGH M, SINGH D, NASIR M, SEHGAL R, SEHGAL A, SINGH R, GARG S, KANWAR R. Molecules, 2015, 20(6):9703-9731.

    11. [11]

      KIM S E, CHOI S, HONG J Y, SHIM K S, KIM T H, PARK K, LEE S H. Nanomaterials, 2019, 10(1):50.

    12. [12]

      ELZOGHBY A O, ABDELMONEEM M A, HASSANIN I A, ABD ELWAKIL M M, ELNAGGAR M A, MOKHTAR S, FANG J Y, ELKHODAIRY K A. Biomaterials, 2020, 263:120355.

    13. [13]

      CHEN Q, ZHENG Z, HE X, RONG S, QIN Y, PENG X, ZHANG R. J. Mater. Chem. B, 2020, 8(41):9492-9501.

    14. [14]

    15. [15]

      WANG Z, HUANG P, JACOBSON O, WANG Z, LIU Y, LIN L, LIN J, LU N, ZHANG H, TIAN R, NIU G, LIU G, CHEN X. ACS Nano, 2016, 10(3):3453-3460.

    16. [16]

    17. [17]

      GAO D, SHENG Z, LIU Y, HU D, ZHANG J, ZHANG X, ZHENG H, YUAN Z. Adv. Healthcare Mater., 2017, 6(1):1601094.

    18. [18]

      CHEN J L, ZHANG H, HUANG X Q, WAN H Y, LI J, FAN X X, LUO K Q, WANG J, ZHU X M, WANG J. Nano-Micro Lett., 2019, 11(1):93.

    19. [19]

      DING X, LIOW C H, ZHANG M, HUANG R, LI C, SHEN H, LIU M, ZOU Y, GAO N, ZHANG Z, LI Y, WANG Q, LI S, JIANG J. J. Am. Chem. Soc., 2014, 136(44):15684-15693.

    20. [20]

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    4. [4]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    14. [14]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    15. [15]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    18. [18]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(19)
  • Abstract views(4295)
  • HTML views(374)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return