Citation:
TIAN Wen-Shuai, CAO Hou-Yong, GAO Jie, ZHANG Yu, CAI Wu-Qi, WANG Fan, HUI Yu, WANG Xing-An, ZHANG Xu-Xin, SUN Jing, LI Yan-Zhao. Research Progress of Wearable Flexible Sensors Based on Polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(11): 1712-1722.
doi:
10.19756/j.issn.0253-3820.221274
-
A wearable flexible sensor is a device that is tightly attached to the skin or tissue of human to collect physiological parameters of the body for data analysis and reference in real time, which has important applications in the fields of medical care, diagnosis and treatment, etc. With the advantages such as stable chemical properties, strong thermal stability, good transparency and biocompatibility, polydimethylsiloxane (PDMS) has been proved to be the best choice for wearable flexible sensors substrates,which can achieve different functions through surface modification and overall characteristic customization. In this paper, the research progress of wearable flexible sensors based on PDMS in recent years is reviewed, as well as the working principles of the sensors and performance comparisons of conductive modified materials. The performance parameters, advantages and disadvantages of different conductive modified materials are exhibited and compared due to their significance in the sensors. This review also introduces different sensors from the application aspect, such as photosensors, temperature sensors, strain sensors, pressure sensors and biochemical sensors. Finally, the challenges and development directions of wearable sensors are prospected.
-
Keywords:
- Wearable,
- Flexible sensors,
- Polydimethylsiloxane,
- Health monitoring,
- Review
-
-
-
[1]
-
[2]
-
[3]
ROSSI E, SALAHSHOOR Z, HO K V, LIN C H, ERREA M I, FIDALGO M M. Microchim. Acta, 2021, 188(3):70.
-
[4]
KUZUBASOGLU B A, BAHADIR S K. Sens. Actuators, A, 2020, 315:112282.
-
[5]
ZHANG J, ZHANG Y, LI Y, WANG P. Polym. Rev., 2022, 62(1):65-94.
-
[6]
HAN T, NAG A, AFSARIMANESH N, MUKHOPADHYAY S C, KUNDU S, XU Y Z. Sensors, 2019, 19(6):1462.
-
[7]
KATARIA D, SANCHEZ G, NAIDU J P, SRINIVASAN M A. IETE J. Res., 2021, 67:646-653.
-
[8]
KWAK Y H, KIM W, PARK K B, KIM K, SEO S. Biosens. Bioelectron., 2017, 94:250-255.
-
[9]
WANG X F, YU J H, CUI Y X, LI W. Sens. Actuators, A, 2021, 330:112838.
-
[10]
PATEL S, PARK H, BONATO P, CHAN L, RODGERS M. J. Neuroeng. Rehabil., 2012, 9:21.
-
[11]
QI D P, ZHANG K Y, TIAN G W, JIANG B, HUANG Y D. Adv.Mater., 2021, 33(6):2003155.
-
[12]
SHER M, ZHUANG R, DEMIRCI U, ASGHAR W. Expert. Rev. Mol. Diagn., 2017, 17(4):351-366.
-
[13]
YANG Y B, YANG X D, TAN Y N, YUAN Q. Nano Res., 2017, 10(5):1560-1583.
-
[14]
CHEN J, ZHENG J H, GAO Q W, ZHANG J J, ZHANG J Y, OMISOREO M, WANG L, LI H. Appl. Sci., 2018, 8(3):345.
-
[15]
XU C, MIAO L M, WANG H B, REN Z Y, GUO H, ZHANG H X. IEEE Trans. Nanotechnol., 2021, 20:137-142.
-
[16]
CHEN S W, QI J M, FAN S C, QIAO Z, YEO J C, LIM C T. Adv. Healthcare Mater., 2021, 10(17):2100116.
-
[17]
NGUYEN T D, LEE J S. Sensors, 2022, 22(1):50.
-
[18]
XIANG L, ZENG X W, XIA F, JIN W L, LIU Y D, HU Y F. ACS Nano, 2020, 14(6):6449-6469.
-
[19]
JEONG Y R, LEE G, PARK H, HA J S. Acc. Chem. Res., 2019, 52(1):91-99.
-
[20]
VAN DEN B J, DE KOK M, KOETSE M, CAUWE M, VERPLANCKE R, BOSSUYT F, JABLONSKI M, VANFLETEREN J. Solid-State. Electron., 2015, 113:116-120.
-
[21]
SAVAGATRUP S, PRINTZ A D, O'CONNOR T F, ZARETSKI A V, LIPOMI D J. Chem. Mater., 2014, 26(10):3028-3041.
-
[22]
SCHROEDER V, SAVAGATRUP S, HE M, LING S B, SWAGER T M. Chem. Rev., 2019, 119(1):599-663.
-
[23]
JUSTINO C I L, COMES A R, FREITAS A C, DUARTE A C, ROCHA-SANTOS T A P. TrAC, Trends Anal. Chem., 2017, 91:53-66.
-
[24]
BIALAS K, MOSCHOU D, MARKEN F, ESTRELA P. Microchim. Acta, 2022, 189(4):172.
-
[25]
PAVEL I A, LAKARD S, LAKARD B. Chemosensors, 2022, 10(3):97.
-
[26]
CHEN X L, ZENG Q, SHAO J Y, LI S, LI X M, TIAN H M, LIU G F, NIE B B, LUO Y S. ACS Appl. Mater. Interfaces, 2021, 13(29):34637-34647.
-
[27]
WANG D, SHENG B, PENG L N, HUANG Y S, NI Z J. Polymers, 2019, 11(9):1433.
-
[28]
-
[29]
YANG T, DENG W L, CHU X, WANG X, HU Y T, FAN X, SONG J, GAO Y Y, ZHANG B B, TIAN G, XIONG D, ZHONG S, TANG L H, HU Y H, YANG W Q. ACS Nano, 2021, 15(7):11555-11563.
-
[30]
ZHANG K M, SUN J W, SONG J Y, GAO C H, WANG Z, SONG C X, WU Y M, LIU Y T. ACS Appl. Mater. Interfaces, 2020, 12(40):45306-45314.
-
[31]
FERRIER D C, HONEYCHURCH K C. Biosensors, 2021, 11(12):486.
-
[32]
MICHEL T R, CAPASSO M J, CAVUSOGLU M E, DECKER J, ZEPPILLI D, ZHU C, BAKRANIA S, KADLOWEC J A, XUE W. Microsyst. Technol., 2020, 26(4):1101-1112.
-
[33]
LIU K, YANG C, SONG L H, WANG Y, WEI Q, ALAMUSI, DENG Q B, HU N. Compos. Sci. Technol., 2022, 218:109148.
-
[34]
CHEN J W, ZHU Y T, JIANG W. Compos. Sci. Technol., 2020, 186:107938.
-
[35]
SINGH E, MEYYAPPAN M, NALWA H S. ACS Appl. Mater. Interfaces, 2017, 9(40):34544-34586.
-
[36]
JIRICKOVA A, JANKOVSKY O, SOFER Z, SEDMIDUBSKY D. Materials, 2022, 15(3):920.
-
[37]
TIAN H, SHU Y, CUI Y L, MI W T, YANG Y, XIE D, REN T L. Nanoscale, 2014, 6(2):699-705.
-
[38]
GUAN H, MENG J W, CHENG Z Y, WANG X Q. ACS Appl. Mater. Interfaces, 2020, 12(41):46357-46365.
-
[39]
WANG H H, CEN Y M, ZENG X Q. ACS Appl. Mater. Interfaces, 2021, 13(24):28538-28545.
-
[40]
MAO Y Y, JI B, CHEN G, HAO C X, ZHOU B P, TIAN Y Q. ACS Appl. Nano Mater., 2019, 2(5):3196-3205.
-
[41]
MAZUMDER V, CHI M F, MORE K L, SUN S H. Angew. Chem., Int. Ed., 2010, 49(49):9368-9372.
-
[42]
ZHANG X M, YANG X L, WANG B. J. Mater. Sci-Mater. El., 2022, 33(10):8104-8113.
-
[43]
BAE C W, TOI P T, KIM B Y, LEE W I, LEE H B, HANIF A, LEE E H, LEE N E. ACS Appl. Mater. Interfaces, 2019, 11(16):14567-14575.
-
[44]
LUAN R F, AN H, CHEN C, XUE Y, GUO A L, CHU L, AHMAD W, LI X A. Z. Anorg. Allg. Chem., 2021, 647(9):1031-1037.
-
[45]
MEI J, BAO Z. Chem. Mater., 2014, 26(1):604-615.
-
[46]
WU H C, HONG C W, CHEN W C. Polym. Chem., 2016, 7(26):4378-4392.
-
[47]
TAN Z T, LI H W, HUANG Y N, GONG X, QI J N, LI J, CHEN X S, JI D Y, LV W B, LI L Q, HU W P. Composites, 2021, 143:106299.
-
[48]
QI D P, LIU Z Y, LIU Y, JIANG Y, LEOW W R, PAL M, PAN S W, YANG H, WANG Y, ZHANG X Q, YU J C, LI B, YU Z, WANG W, CHEN X D. Adv. Mater., 2017, 29(40):1702800.
-
[49]
ZHANG Y, HU Y, ZHU P, HAN F, ZHU Y, SUN R, WONG C P. ACS Appl. Mater. Interfaces, 2017, 9(41):35968-35976.
-
[50]
LEE M S, LEE K, KIM S Y, LEE H, PARK J, CHOI K H, KIM H K, KIM D G, LEE D Y, NAM S, PARK J U. Nano Lett., 2013, 13(6):2814-2821.
-
[51]
SEGEV-BAR M, HAICK H. ACS Nano, 2013, 7(10):8366-8378.
-
[52]
PUNEETHA P, MALLEM S P R, LEE Y W, SHIM J. ACS Appl. Mater. Interfaces, 2020, 12(32):36660-36669.
-
[53]
WANG W, XIANG C X, ZHU Q, ZHONG W B, LI M F, YAN K L, WANG D. ACS Appl. Mater. Interfaces, 2018, 10(32):27215-27223.
-
[54]
YU Q Y, ZHANG P, CHEN Y C. Micromachines, 2021, 12(10):1219.
-
[55]
SONG Y H, DONG H, LIU W X, FU X, FU Z, LI P L, CHEN L, AHMAD Z, LIU J, CHEN X, CHANG M W. ACS. Appl. Polym. Mater., 2022, 4(2):868-878
-
[56]
ZHENG Q B, LEE J H, SHEN X, CHEN X D, KIM J K. Mater. Today, 2020, 36:158-179.
-
[57]
KIM T Y, SUH W, JEONG U. Mat. Sci. Eng. R., 2021, 146:100640.
-
[58]
LI Z W, CHENG L, SONG Q K. IEEE. Sens. J., 2021, 21(4):4365-4376.
-
[59]
HU Y F, HUANG T Q, ZHANG H J, LIN H J, ZHANG Y, KE L W, CAO W, HU K, DING Y, WANG X Y, RUI K, ZHU J X, HUANG W. ACS Appl. Mater. Interfaces, 2021, 13(20):23905-23914.
-
[60]
LEE M E, ARMANI A M. ACS Sens., 2016, 1(10):1251-1255.
-
[61]
RYU D, MONGARE A. Materials, 2018, 11(10):1970.
-
[62]
HERBERT R, LIM H R, YEO W H. ACS Appl. Mater. Interfaces, 2020, 12(22):25020-25030.
-
[63]
LI T Y, LI J H, ZHONG A, HAN F, SUN R, WONG C P, NIU F F, ZHANG G P, JIN Y F. Sens. Actuators, A, 2020, 306:111959.
-
[64]
HAN M, LEE J, KIM J K, AN H K, KANG S W, JUNG D. Sens. Actuators, A, 2020, 305:111941.
-
[65]
WANG F F, TAN Y H, PENG H Y, MENG F C, YAO X G. Mater. Lett., 2021, 303:130512.
-
[66]
LI W, JIN X, HAN X, LI Y R, WANG W Y, LIN T, ZHU Z T. ACS Appl. Mater. Interfaces, 2021, 13(16):19211-19220.
-
[67]
PEGAN J D, ZHANG J, CHU M, NGUYEN T, PARK S J, PAUL A, KIM J, BACHMAN M, KHINE M. Nanoscale, 2016, 8(39):17295-17303.
-
[68]
LIU R P, HE L, CAO M J, SUN Z C, ZHU R Q, LI Y. Front. Chem., 2021, 9:539678.
-
[69]
YANG J, WEI D P, TANG L L, SONG X F, LUO W, CHU J, GAO T P, SHI H F, DU C L. RSC Adv., 2015, 5(32):25609-25615.
-
[70]
LI Y C, ZHENG C R, LIU S, HUANG L, FANG T S, LI J X Z, XU F, LI F. ACS Appl. Mater. Interfaces, 2020, 12(21):23764-23773.
-
[71]
GAO Y J, YU L T, YEO J C, LIM C T. Adv. Mater., 2020, 32(15):1902133.
-
[72]
SHEN G Z. Prog. Nat. Sci.-Mater., 2021, 31(6):872-882.
-
[73]
SHU Y, SHANG Z J, SU T, ZHANG S H, LU Q, XU Q, HU X Y. Analyst, 2022, 147(7):1440-1448.
-
[74]
HUI X, XUAN X, KIM J, PARK J Y. Electrochim. Acta, 2019, 328:135066.
-
[75]
LIU Q, SHI W S, TIAN L, SU M J, JIANG M Y, LI J, GU H Y, YU C M. Anal. Chim. Acta, 2021, 1184:339010.
-
[76]
ZHAO T M, ZHENG C W, HE H X, GUAN H Y, ZHONG T Y, XING L L, XUE X Y. Smart Mater. Struct., 2019, 28(8):085015.
-
[77]
ZHAO Z T, HUANG Y Y, LI Q G, MEI H J, ZHU F L, GONG W P. Appl. Surf. Sci., 2021, 565:150553.
-
[78]
YANG A N, YAN F. ACS Appl. Electron. Mater., 2021, 3(1):53-67.
-
[1]
-
-
-
[1]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[2]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[3]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[4]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[5]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[6]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[7]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[8]
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
-
[9]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[10]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[13]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[14]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[15]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
-
[16]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[17]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[18]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004
-
[19]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
-
[20]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[1]
Metrics
- PDF Downloads(17)
- Abstract views(924)
- HTML views(141)