Citation: TIAN Wen-Shuai,  CAO Hou-Yong,  GAO Jie,  ZHANG Yu,  CAI Wu-Qi,  WANG Fan,  HUI Yu,  WANG Xing-An,  ZHANG Xu-Xin,  SUN Jing,  LI Yan-Zhao. Research Progress of Wearable Flexible Sensors Based on Polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1712-1722. doi: 10.19756/j.issn.0253-3820.221274 shu

Research Progress of Wearable Flexible Sensors Based on Polydimethylsiloxane

  • Corresponding author: SUN Jing,  LI Yan-Zhao, 
  • Received Date: 31 May 2022
    Revised Date: 5 July 2022

    Fund Project: Supported by the Liaoning Province-Shenyang National Laboratory for Materials Science Joint Research and Development Fund (No.2019010274-JH3/301), the Natural Science Foundation of Liaoning Province (No.2021JH6/10500143), the Innovation and Entrepreneurship Team Fund of Dalian University, the Natural Science Foundation of Liaoning Province, China (No.2020-KF-14-05) and the State Key Laboratory of Light Alloy Casting Technology for High-end Equipment (No.LACT-006).

  • A wearable flexible sensor is a device that is tightly attached to the skin or tissue of human to collect physiological parameters of the body for data analysis and reference in real time, which has important applications in the fields of medical care, diagnosis and treatment, etc. With the advantages such as stable chemical properties, strong thermal stability, good transparency and biocompatibility, polydimethylsiloxane (PDMS) has been proved to be the best choice for wearable flexible sensors substrates,which can achieve different functions through surface modification and overall characteristic customization. In this paper, the research progress of wearable flexible sensors based on PDMS in recent years is reviewed, as well as the working principles of the sensors and performance comparisons of conductive modified materials. The performance parameters, advantages and disadvantages of different conductive modified materials are exhibited and compared due to their significance in the sensors. This review also introduces different sensors from the application aspect, such as photosensors, temperature sensors, strain sensors, pressure sensors and biochemical sensors. Finally, the challenges and development directions of wearable sensors are prospected.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      ROSSI E, SALAHSHOOR Z, HO K V, LIN C H, ERREA M I, FIDALGO M M. Microchim. Acta, 2021, 188(3):70.

    4. [4]

      KUZUBASOGLU B A, BAHADIR S K. Sens. Actuators, A, 2020, 315:112282.

    5. [5]

      ZHANG J, ZHANG Y, LI Y, WANG P. Polym. Rev., 2022, 62(1):65-94.

    6. [6]

      HAN T, NAG A, AFSARIMANESH N, MUKHOPADHYAY S C, KUNDU S, XU Y Z. Sensors, 2019, 19(6):1462.

    7. [7]

      KATARIA D, SANCHEZ G, NAIDU J P, SRINIVASAN M A. IETE J. Res., 2021, 67:646-653.

    8. [8]

      KWAK Y H, KIM W, PARK K B, KIM K, SEO S. Biosens. Bioelectron., 2017, 94:250-255.

    9. [9]

      WANG X F, YU J H, CUI Y X, LI W. Sens. Actuators, A, 2021, 330:112838.

    10. [10]

      PATEL S, PARK H, BONATO P, CHAN L, RODGERS M. J. Neuroeng. Rehabil., 2012, 9:21.

    11. [11]

      QI D P, ZHANG K Y, TIAN G W, JIANG B, HUANG Y D. Adv.Mater., 2021, 33(6):2003155.

    12. [12]

      SHER M, ZHUANG R, DEMIRCI U, ASGHAR W. Expert. Rev. Mol. Diagn., 2017, 17(4):351-366.

    13. [13]

      YANG Y B, YANG X D, TAN Y N, YUAN Q. Nano Res., 2017, 10(5):1560-1583.

    14. [14]

      CHEN J, ZHENG J H, GAO Q W, ZHANG J J, ZHANG J Y, OMISOREO M, WANG L, LI H. Appl. Sci., 2018, 8(3):345.

    15. [15]

      XU C, MIAO L M, WANG H B, REN Z Y, GUO H, ZHANG H X. IEEE Trans. Nanotechnol., 2021, 20:137-142.

    16. [16]

      CHEN S W, QI J M, FAN S C, QIAO Z, YEO J C, LIM C T. Adv. Healthcare Mater., 2021, 10(17):2100116.

    17. [17]

      NGUYEN T D, LEE J S. Sensors, 2022, 22(1):50.

    18. [18]

      XIANG L, ZENG X W, XIA F, JIN W L, LIU Y D, HU Y F. ACS Nano, 2020, 14(6):6449-6469.

    19. [19]

      JEONG Y R, LEE G, PARK H, HA J S. Acc. Chem. Res., 2019, 52(1):91-99.

    20. [20]

      VAN DEN B J, DE KOK M, KOETSE M, CAUWE M, VERPLANCKE R, BOSSUYT F, JABLONSKI M, VANFLETEREN J. Solid-State. Electron., 2015, 113:116-120.

    21. [21]

      SAVAGATRUP S, PRINTZ A D, O'CONNOR T F, ZARETSKI A V, LIPOMI D J. Chem. Mater., 2014, 26(10):3028-3041.

    22. [22]

      SCHROEDER V, SAVAGATRUP S, HE M, LING S B, SWAGER T M. Chem. Rev., 2019, 119(1):599-663.

    23. [23]

      JUSTINO C I L, COMES A R, FREITAS A C, DUARTE A C, ROCHA-SANTOS T A P. TrAC, Trends Anal. Chem., 2017, 91:53-66.

    24. [24]

      BIALAS K, MOSCHOU D, MARKEN F, ESTRELA P. Microchim. Acta, 2022, 189(4):172.

    25. [25]

      PAVEL I A, LAKARD S, LAKARD B. Chemosensors, 2022, 10(3):97.

    26. [26]

      CHEN X L, ZENG Q, SHAO J Y, LI S, LI X M, TIAN H M, LIU G F, NIE B B, LUO Y S. ACS Appl. Mater. Interfaces, 2021, 13(29):34637-34647.

    27. [27]

      WANG D, SHENG B, PENG L N, HUANG Y S, NI Z J. Polymers, 2019, 11(9):1433.

    28. [28]

    29. [29]

      YANG T, DENG W L, CHU X, WANG X, HU Y T, FAN X, SONG J, GAO Y Y, ZHANG B B, TIAN G, XIONG D, ZHONG S, TANG L H, HU Y H, YANG W Q. ACS Nano, 2021, 15(7):11555-11563.

    30. [30]

      ZHANG K M, SUN J W, SONG J Y, GAO C H, WANG Z, SONG C X, WU Y M, LIU Y T. ACS Appl. Mater. Interfaces, 2020, 12(40):45306-45314.

    31. [31]

      FERRIER D C, HONEYCHURCH K C. Biosensors, 2021, 11(12):486.

    32. [32]

      MICHEL T R, CAPASSO M J, CAVUSOGLU M E, DECKER J, ZEPPILLI D, ZHU C, BAKRANIA S, KADLOWEC J A, XUE W. Microsyst. Technol., 2020, 26(4):1101-1112.

    33. [33]

      LIU K, YANG C, SONG L H, WANG Y, WEI Q, ALAMUSI, DENG Q B, HU N. Compos. Sci. Technol., 2022, 218:109148.

    34. [34]

      CHEN J W, ZHU Y T, JIANG W. Compos. Sci. Technol., 2020, 186:107938.

    35. [35]

      SINGH E, MEYYAPPAN M, NALWA H S. ACS Appl. Mater. Interfaces, 2017, 9(40):34544-34586.

    36. [36]

      JIRICKOVA A, JANKOVSKY O, SOFER Z, SEDMIDUBSKY D. Materials, 2022, 15(3):920.

    37. [37]

      TIAN H, SHU Y, CUI Y L, MI W T, YANG Y, XIE D, REN T L. Nanoscale, 2014, 6(2):699-705.

    38. [38]

      GUAN H, MENG J W, CHENG Z Y, WANG X Q. ACS Appl. Mater. Interfaces, 2020, 12(41):46357-46365.

    39. [39]

      WANG H H, CEN Y M, ZENG X Q. ACS Appl. Mater. Interfaces, 2021, 13(24):28538-28545.

    40. [40]

      MAO Y Y, JI B, CHEN G, HAO C X, ZHOU B P, TIAN Y Q. ACS Appl. Nano Mater., 2019, 2(5):3196-3205.

    41. [41]

      MAZUMDER V, CHI M F, MORE K L, SUN S H. Angew. Chem., Int. Ed., 2010, 49(49):9368-9372.

    42. [42]

      ZHANG X M, YANG X L, WANG B. J. Mater. Sci-Mater. El., 2022, 33(10):8104-8113.

    43. [43]

      BAE C W, TOI P T, KIM B Y, LEE W I, LEE H B, HANIF A, LEE E H, LEE N E. ACS Appl. Mater. Interfaces, 2019, 11(16):14567-14575.

    44. [44]

      LUAN R F, AN H, CHEN C, XUE Y, GUO A L, CHU L, AHMAD W, LI X A. Z. Anorg. Allg. Chem., 2021, 647(9):1031-1037.

    45. [45]

      MEI J, BAO Z. Chem. Mater., 2014, 26(1):604-615.

    46. [46]

      WU H C, HONG C W, CHEN W C. Polym. Chem., 2016, 7(26):4378-4392.

    47. [47]

      TAN Z T, LI H W, HUANG Y N, GONG X, QI J N, LI J, CHEN X S, JI D Y, LV W B, LI L Q, HU W P. Composites, 2021, 143:106299.

    48. [48]

      QI D P, LIU Z Y, LIU Y, JIANG Y, LEOW W R, PAL M, PAN S W, YANG H, WANG Y, ZHANG X Q, YU J C, LI B, YU Z, WANG W, CHEN X D. Adv. Mater., 2017, 29(40):1702800.

    49. [49]

      ZHANG Y, HU Y, ZHU P, HAN F, ZHU Y, SUN R, WONG C P. ACS Appl. Mater. Interfaces, 2017, 9(41):35968-35976.

    50. [50]

      LEE M S, LEE K, KIM S Y, LEE H, PARK J, CHOI K H, KIM H K, KIM D G, LEE D Y, NAM S, PARK J U. Nano Lett., 2013, 13(6):2814-2821.

    51. [51]

      SEGEV-BAR M, HAICK H. ACS Nano, 2013, 7(10):8366-8378.

    52. [52]

      PUNEETHA P, MALLEM S P R, LEE Y W, SHIM J. ACS Appl. Mater. Interfaces, 2020, 12(32):36660-36669.

    53. [53]

      WANG W, XIANG C X, ZHU Q, ZHONG W B, LI M F, YAN K L, WANG D. ACS Appl. Mater. Interfaces, 2018, 10(32):27215-27223.

    54. [54]

      YU Q Y, ZHANG P, CHEN Y C. Micromachines, 2021, 12(10):1219.

    55. [55]

      SONG Y H, DONG H, LIU W X, FU X, FU Z, LI P L, CHEN L, AHMAD Z, LIU J, CHEN X, CHANG M W. ACS. Appl. Polym. Mater., 2022, 4(2):868-878

    56. [56]

      ZHENG Q B, LEE J H, SHEN X, CHEN X D, KIM J K. Mater. Today, 2020, 36:158-179.

    57. [57]

      KIM T Y, SUH W, JEONG U. Mat. Sci. Eng. R., 2021, 146:100640.

    58. [58]

      LI Z W, CHENG L, SONG Q K. IEEE. Sens. J., 2021, 21(4):4365-4376.

    59. [59]

      HU Y F, HUANG T Q, ZHANG H J, LIN H J, ZHANG Y, KE L W, CAO W, HU K, DING Y, WANG X Y, RUI K, ZHU J X, HUANG W. ACS Appl. Mater. Interfaces, 2021, 13(20):23905-23914.

    60. [60]

      LEE M E, ARMANI A M. ACS Sens., 2016, 1(10):1251-1255.

    61. [61]

      RYU D, MONGARE A. Materials, 2018, 11(10):1970.

    62. [62]

      HERBERT R, LIM H R, YEO W H. ACS Appl. Mater. Interfaces, 2020, 12(22):25020-25030.

    63. [63]

      LI T Y, LI J H, ZHONG A, HAN F, SUN R, WONG C P, NIU F F, ZHANG G P, JIN Y F. Sens. Actuators, A, 2020, 306:111959.

    64. [64]

      HAN M, LEE J, KIM J K, AN H K, KANG S W, JUNG D. Sens. Actuators, A, 2020, 305:111941.

    65. [65]

      WANG F F, TAN Y H, PENG H Y, MENG F C, YAO X G. Mater. Lett., 2021, 303:130512.

    66. [66]

      LI W, JIN X, HAN X, LI Y R, WANG W Y, LIN T, ZHU Z T. ACS Appl. Mater. Interfaces, 2021, 13(16):19211-19220.

    67. [67]

      PEGAN J D, ZHANG J, CHU M, NGUYEN T, PARK S J, PAUL A, KIM J, BACHMAN M, KHINE M. Nanoscale, 2016, 8(39):17295-17303.

    68. [68]

      LIU R P, HE L, CAO M J, SUN Z C, ZHU R Q, LI Y. Front. Chem., 2021, 9:539678.

    69. [69]

      YANG J, WEI D P, TANG L L, SONG X F, LUO W, CHU J, GAO T P, SHI H F, DU C L. RSC Adv., 2015, 5(32):25609-25615.

    70. [70]

      LI Y C, ZHENG C R, LIU S, HUANG L, FANG T S, LI J X Z, XU F, LI F. ACS Appl. Mater. Interfaces, 2020, 12(21):23764-23773.

    71. [71]

      GAO Y J, YU L T, YEO J C, LIM C T. Adv. Mater., 2020, 32(15):1902133.

    72. [72]

      SHEN G Z. Prog. Nat. Sci.-Mater., 2021, 31(6):872-882.

    73. [73]

      SHU Y, SHANG Z J, SU T, ZHANG S H, LU Q, XU Q, HU X Y. Analyst, 2022, 147(7):1440-1448.

    74. [74]

      HUI X, XUAN X, KIM J, PARK J Y. Electrochim. Acta, 2019, 328:135066.

    75. [75]

      LIU Q, SHI W S, TIAN L, SU M J, JIANG M Y, LI J, GU H Y, YU C M. Anal. Chim. Acta, 2021, 1184:339010.

    76. [76]

      ZHAO T M, ZHENG C W, HE H X, GUAN H Y, ZHONG T Y, XING L L, XUE X Y. Smart Mater. Struct., 2019, 28(8):085015.

    77. [77]

      ZHAO Z T, HUANG Y Y, LI Q G, MEI H J, ZHU F L, GONG W P. Appl. Surf. Sci., 2021, 565:150553.

    78. [78]

      YANG A N, YAN F. ACS Appl. Electron. Mater., 2021, 3(1):53-67.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    14. [14]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    15. [15]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    19. [19]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(17)
  • Abstract views(925)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return