Citation: YU Zi-Jing,  XIAO Ming-Shu,  PEI Hao,  LI Li. DNA Origami-based Enzyme Cascade Catalysis for Electrochemical Detection of Low Density Lipoprotein[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 850-858. doi: 10.19756/j.issn.0253-3820.221111 shu

DNA Origami-based Enzyme Cascade Catalysis for Electrochemical Detection of Low Density Lipoprotein

  • Corresponding author: LI Li, lli@chem.ecnu.edu.cn
  • Received Date: 1 March 2022
    Revised Date: 21 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 22074041, 22104038), the Science and Technology Commission of Shanghai Municipality(Nos. 22ZR1419800, 18490740500) and the China Postdoctoral Science Foundation(Nos. 2020TQ0097, 2021M701212).

  • The development of many diseases(e.g., atherosclerosis) is closely associated with abnormal level of low density lipoprotein(LDL), and developing methods for rapid and sensitive detection of LDL is of great importance to early diagnosis of atherosclerosis. In this work, a novel electrochemical sensor based on DNA origami-based enzymatic cascade catalysis was reported for detection of LDL. Benefiting from the programmability and addressability of nucleic acids, two enzymes(i.e., cholesterol oxidase and horseradish peroxidase) were specifically assembled on DNA origami, and the cascade catalysis efficiency towards LDL was optimized by regulating their distance, including 20, 40 and 80 nm. Through Au-S chemical bond, DNA origami loading enzymes was modified on Au electrode to construct enzymatic cascade catalysis-based electrochemical sensor. The results demonstrated that this sensor showed excellent performance for LDL detection, with a linear response range of 2-15 μmol/L, a low limit of detection of 1.8 μmol/L(S/N=3), and good selectivity. The recoveries of LDL spiked in healthy human serum sample were 97.8%-103.6%, indicating good reproducibility and stability. This electrochemical sensor utilizing DNA origami-based enzymatic cascade catalysis provided a promising tool for rapid and sensitive detection of LDL, holding a great potential for early diagnosis of atherosclerosis.
  • 加载中
    1. [1]

      LIBBY P. Nature, 2021, 592(7855):524-533.

    2. [2]

      GLASS C K, WITZTUM J L. Cell, 2001, 104(4):503-516.

    3. [3]

      FERENCE B A, GINSBERG H N, GRAHAM I, RAY K K, PACKARD C J, BRUCKERT E, HEGELE R A, KRAUSS R M, RAAL F J, SCHUNKERT H. Eur. Heart J., 2017, 38(32):2459-2472.

    4. [4]

      BOREN J, CHAPMAN M J, KRAUSS R M, PACKARD C J, BENTZON J F, BINDER C J, DAEMEN M J, DEMER L L, HEGELE R A, NICHOLLS S J. Eur. Heart J., 2020, 41(24):2313-2330.

    5. [5]

      MCMAHON M, GROSSMAN J, FITZGERALD J, DAHLIN-LEE E, WAKKACE D J, THONG B Y, BADSHA H, KALUNIAN K, CHARLES C, NAVAB M, FOGELMAN A M, HAHN B H. Arthritis Rheum., 2006, 54(8):2541-2549.

    6. [6]

      TRPKOVIC A, RESANOVIC I, STANIMIROVIC J, RADAK D, MOUSA S A, CENIC-MILOSEVIC D, JEVREMOVIC D, ISENOVIC E R. Crit. Rev. Clin. Lab. Sci., 2015, 52(2):70-85.

    7. [7]

      DONG J, GUO H J, YANG R Y, LI H X, WANG S, ZHANG J T, ZHOU W Y, CHEN W X. Clin. Chim. Acta, 2012, 413(13-14):1071-1076.

    8. [8]

      TAN X W, TAKENAKA F, TAKEKAWA H, MATSUURA E. Heliyon, 2020, 6(6):e04114

    9. [9]

      BERNEIS K, LA BELLE M, BLANCHE P J, KRAUSS R M. J. Lipid Res., 2002, 43(7):1155-1159.

    10. [10]

      JIE G F, LIU B, PAN H C, ZHU J J, CHEN H Y. Anal. Chem., 2007, 79(15):5574-5581.

    11. [11]

      ALI M A, SOLANKI P R, SRIVASTAVA S, SINGH S, AGRAWAL V V, JOHN R, MALHOTRA B D. ACS Appl.Mater. Interfaces, 2015, 7(10):5837-5846.

    12. [12]

      WANG X, PEREIRA J H, TSUTAKAWA S, FANG X, ADAMS P D, MUKHOPADHYAY A, LEE T S. Metab.Eng., 2021, 64:41-51.

    13. [13]

      FU Y M, ZENG D D, CHAO J, JIN Y Q, ZHANG Z, LIU Hu J, LI D, MA H W, HUANG Q, GOTHELF K V. J.Am. Chem. Soc., 2013, 135(2):696-702.

    14. [14]

      XIAO M S, LAI W, MAN T T, CHANG B B, LI L, CHANDRASEKARAN A R, PEI H. Chem. Rev., 2019, 119(22):11631-11717.

    15. [15]

    16. [16]

      CAO M, SUN Y, XIAO M, LI L, LIU X, JIN H, PEI H. Chem. Res. Chin. Univ., 2020, 36(2):254-260.

    17. [17]

      JI W, LI X, XIAO M, SUN Y, LAI W, ZHANG H, PEI H, LI L. Chem.-Eur. J., 2021. 27(34):8745-8752.

    18. [18]

      HAN D, PAL S, NANGREAVE J, DENG Z, LIU Y, YAN H. Science, 2011, 332(6027):342-346.

    19. [19]

      HONG F, ZHANG F, LIU Y, YAN H. Chem. Rev., 2017, 117(20):12584-12640.

    20. [20]

      MALLIK L, DHAKAL S, NICHOLS J, MAHONEY J, DOSEY A M, JIANG S X, SUNAHARA R K, SKINIOTIS G, WALTER N G. ACS Nano, 2015, 9(7):7133-7141.

    21. [21]

      PEI H, SHA R J, WANG X W, ZHENG M, FAN C H, CANARY J W, SEEMAN N C. J. Am. Chem. Soc., 2019, 141(30):11923-11928.

    22. [22]

      XIAO M S, LAI W, WANG F, LI L, FAN C H, PEI H. J. Am. Chem. Soc., 2019, 141(51):20354-20364.

    23. [23]

    24. [24]

      VENEZIANO R, MOYER T J, STONE M B, WAMHOFF E C, READ B J, MUKHERJEE S, SHEPHERD T R, DAS J, SCHIEF W R, IRVINE D J, BATHE M. Nat. Nanotehnol., 2020, 15(8):716-723.

    25. [25]

      HONG F, ZHANG F, LIU Y, YAN H. Chem. Rev., 2017, 117(20):12584-12640.

    26. [26]

      PUCHKOVA A, VIETZ C, PIBIRI E, WUNSCH B, SANZ-PAZ M, ACUNA G P, TINNEFELD P. Nano Lett., 2015, 15(12):8354-8359.

    27. [27]

      OCHMANN S E, VIETZ C, TROFYMCHUK K, ACUNA G P, LALKENS B, TINNEFELD P. Anal. Chem. 2017, 89(23):13000-13007.

    28. [28]

      ZHAO D, KONG Y, ZHAO S, XING H. Top. Curr. Chem., 2020, 378:41.

    29. [29]

      NIEMEYER C M. Angew. Chem., Int. Ed., 2010, 49(7):1200-1216.

    30. [30]

      FU J, YANG Y R, DHAKAL S, ZHAO Z, LIU M, ZHANG T, WALTER N G, YAN H. Nat. Protoc., 2016, 11(11):2243-2273.

    31. [31]

      FU J, LIU M, LIU Y, WOOBURY N W, YAO H. J. Am. Chem. Soc., 2012, 134(12):5516-5519.

    32. [32]

      KAHN J S, XIONG Y, HUANG J, GANG O. JACS Au, 2022, 2(2):357-366.

    33. [33]

      SONG P, SHEN J, YE D, DONG B, WANG F, PEI H, WANG J, SHI J, WANG L, XUE W, HUANG Y, HUANG G, ZUO X, FAN C. Nat. Commun., 2020, 11:838.

    34. [34]

      KE Y G, LINDSAY S, CHANG Y, LIU Y, YAN H. Science, 2008, 319(5860):180-183.

    35. [35]

      GE Z, FU J, LIU M, JIANG S, ANDREONI A, ZUO X, LIU Y, YAN H, FAN C. ACS Appl. Mater. Interfaces, 2018, 11(15):13881-13887.

    36. [36]

      ZHANG J, SONG S P, WANG L H, PAN D, FAN C H. Nat. Protoc., 2007, 2(11):2888-2895.

    37. [37]

      ALI M A, KAMIL R K, SRIVASTAVA S, AGRAWAL V V, JOHN R, MALHOTRA B D. Langmuir, 2014, 30(14):4192-4201.

    38. [38]

      ALI M A, SRIVASTAVA S, PANDEY M K, AGRAWAL V V, JOHN R, MALHOTRA B D. Anal. Chem., 2014, 86(3):1710-1718.

    39. [39]

      LIU Y, YU D S, ZENG C, MIAO Z C, DAI L M. Langmuir, 2010, 26(9):6158-6160

    40. [40]

      YARA A, MANEL V. Electrochim. Acta, 2017, 229:458-466.

    41. [41]

      ALI M A, SIINGH C, MONDAL K, SRIVASTAVA S, SHARMA A, MALHOTRA B D. ACS Appl. Mater.Interfaces, 2016, 8(12):7646-7656.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    11. [11]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

Metrics
  • PDF Downloads(10)
  • Abstract views(969)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return