Citation: TENG Ke-Guo,  GAO Jing,  YANG Li-Li,  YU Quan,  WANG Xiao-Hao. Development and Application of Self-aspiration Hollow Needle Corona Discharge Ionization Source[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1143-1149. doi: 10.19756/j.issn.0253-3820.221094 shu

Development and Application of Self-aspiration Hollow Needle Corona Discharge Ionization Source

  • Corresponding author: YU Quan, yu.quan@sz.tsinghua.edu.cn
  • Received Date: 23 February 2022
    Revised Date: 25 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775085), the Key Research and Development Program of Hebei Province, China (No.19275509D) and the Fundamental Research Program of Shenzhen, China (No.JCYJ20180508152013054).

  • A self-aspiration corona discharge ionization source was constructed for detection of volatile organic compounds (VOCs). This source had a simple structure that used the tip of a syringe needle to generate the corona discharge. In addition, the hollow needle could also be used as the introduction pathway for the gaseous sample, which allowed the gas to pass through the corona zone efficiently to improve the ionization efficiency. The needle tip was placed in a sealed chamber that was directly connected to the sampling interface of the mass spectrometer. This design could not only utilize the pumping capability of the instrument for self-aspiration sampling, but also avoid the influence of ambient factors on the ionization process. Moreover, the developed hollow needle corona discharge (HNCD) source could be used with a syringe cylinder to facilitate the collection, storage and automatic injection of gas samples. The experimental test results showed that the HNCD source had various merits, including easy operation, fast response and good stability. The detection limit of aniline acquired using this device was at nL/L level, which showed a good application prospect.
  • 加载中
    1. [1]

      BECKER R, DORGERLOH U, HELMIS M, MUMME J, DIAKITE M, NEHLS I. Bioresour. Technol., 2013, 130:621-628.

    2. [2]

      BELLUOMO I, BOSHIER P R, MYRIDAKIS A, VADHWANA B, MARKAR S R, SPANEL P, HANNA G B. Nat. Protoc., 2021:16(7):3419-3438.

    3. [3]

      BIASIOLI F, YERETZIAN C, MÄRK T D, DEWULF J, VAN LANGENHOVE H. TrAC-Trends Anal. Chem., 2011, 30(7):1003-1017.

    4. [4]

      DUBROW G A, FORERO D P, PETERSON D G. Food Chem., 2022, 378:132043.

    5. [5]

      RADICA F, VENTURA G D, MALFATTI L, GUIDI M C, D'ARCO A, GRILLI A, MARCELLI A, INNOCENZI P. Talanta, 2021, 233:122510.

    6. [6]

      SPINELLE L, GERBOLES M, KOK G, PERSIJN S, SAUERWALD T. Sensors (Basel), 2017, 17(7):1520.

    7. [7]

    8. [8]

      GIANNOUKOS S, BRKIC'B, TAYLOR S, MARSHALL A, VERBECK G F. Chem. Rev., 2016, 116(14):8146-8172.

    9. [9]

      GOULD O, DRABINSKA N, RATCLIFFE N, COSTELLO B D. Molecules, 2021, 26(23):7185.

    10. [10]

      RATIU I A, LIGOR T, BOCOS-BINTINTAN V, BUSZEWSKI B. Bioanalysis, 2017, 9(14):1069-1092.

    11. [11]

      CASAC-FERREIRA A M, NOGAL-SANCHEZ M D, PÉREZ-PAVON J L, MORENO-CORDERO B. Anal. Chim. Acta, 2019, 1045:10-22.

    12. [12]

      SHI W Y, HUO X M, TIAN Y, LU X Q, YANG L L, ZHOU Q, WANG X H, YU Q. Talanta, 2021, 230:122352.

    13. [13]

      ZHANG Q, TIAN Y, ALIANG M, YU Q, WANG X H. Rapid Commun. Mass Spectrom., 2020, 34(6):e8621.

    14. [14]

    15. [15]

      MENG X Z, TANG C W, ZHANG C X, LI D Y, XU W, ZHAI Y B. J. Am. Soc. Mass Spectrom., 2020, 31(4):961-968.

    16. [16]

      GENG X, ZHAO Z Y, LI H L, CHEN D D Y. Anal. Chem., 2021, 93(50):16813-16820.

    17. [17]

      CHEN L C, YU Z, FURUYA H, HASHIMOTO Y, TAKEKAWA K, SUZUKI H, ARIYADA O, HIRAOKA K. J. Mass Spectrom., 2010, 45(8):861-869.

    18. [18]

      ZHU J J, HILL J E. Food Microbiol., 2013, 34(2):412-417.

    19. [19]

      WOLF J C, SCHAER M, SIEGENTHALER P, ZENOBI R. Anal. Chem., 2015, 87(1):723-729.

    20. [20]

      ZHONG Q S, CHENG F, LIANG J C, WANG X Z, CHEN Y H, FANG X Y, HU L H, HANG Y P. Sci. Rep., 2019, 9:13139.

    21. [21]

      TOWNSEND J S, EDMUNDS P J. Philos. Mag., 1914, 27(161):789-801.

    22. [22]

      ORTÉGA P, HEILBRONNER F, RVHLING F, DÍAZ R, RODIōRE M. J. Phys. D:Appl. Phys., 2005, 38(13):2215-2226.

    23. [23]

      VALADBEIGI Y, ILBEIGI V, MICHALCZUK B, SABO M, MATEJCIK S. J. Phys. Chem. A, 2019, 123(1):313-322.

    24. [24]

      SONG L X, YOU Y, EVANS-NGUYEN T. Anal. Chem., 2019, 91(1):912-918.

    25. [25]

      NIKOLAEV E, RITER L S, LAUGHLIN B C, HANDBERG E, COOKS R G. Eur. J. Mass Spectrom., 2004, 10(2):197-204.

    26. [26]

      LEE S, KULYK D S, MARANO N, BADU-TAWIAH A K. Anal. Chem., 2021, 93(4):2440-2448.

    27. [27]

      ZHANG Q, LIN L, YU Q, WANG X H. RSC Adv., 2020, 10(7):4103-4109.

    28. [28]

      SABO M, SMATEJCIK S. Anal. Chem., 2012, 84(12):5327-5334.

    29. [29]

      SANDER R. Atmos. Chem. Phys., 2015, 15(8):4399-4981.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    3. [3]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    9. [9]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    18. [18]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(20)
  • Abstract views(1055)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return