Citation: LIU Kai-fan,  LI Zong-jun,  CHEN Wei. Electrocatalytic Activities of Au24 and Au25 Nanoclusters for Carbon Dioxide Reduction Reaction[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 593-601. doi: 10.19756/j.issn.0253-3820.221092 shu

Electrocatalytic Activities of Au24 and Au25 Nanoclusters for Carbon Dioxide Reduction Reaction

  • Corresponding author: CHEN Wei, weichen@ciac.ac.cn
  • Received Date: 22 February 2022
    Revised Date: 22 March 2022

    Fund Project: the National Natural Science Foundation of China(No. 21773224)Supported by the National Key Research and Development Plan(No. 2020YFB1506001)

  • Reduction of CO2 into useful fuels and chemicals through electrochemical catalytic processes is currently the most promising way to address CO2 emissions and utilize CO2.Herein, we report a method to use atomically well-defined gold nanoclusters Au24 NCs and Au25 NCs as catalytically active sites for electrochemical carbon dioxide electroreduction reaction (CO2RR) by supporting the as-prepared Au24 NCs and Au25 NCs on carbon substrates.The electrochemical results show that Au24 NCs/C achieves the highest CO Faradaic efficiency of 77.5%at-0.58 V, and Au25 NCs/C achieves the highest CO Faradaic efficiency of 68.9% at-0.68 V.By comparison, it can be found that the highest CO Faradaic efficiency obtained on Au24 NCs/C is 8.6% higher than that on Au25 NCs/C.Meanwhile, compared to Au25 NCs/C, the potential for the highest CO Faradaic efficiency has a positive shift of 100 mV on Au24 NCs/C.These data indicate that Au24 NCs/C has better catalytic activity than Au25 NCs/C for CO2RR, which may be attributed to the different coordination structures of the two gold clusters.Compared with Au25 NCs/C, Au24 NCs/C lacks a central atom, and therefore its peripheral ligands may be more easily to drop off from the cluster surface, resulting in more exposed Au active sites for CO2RR.This study reveals the structure effect of metal clusters on their electrocatalytic properties and is helpful for the design of high-performance and highly selective CO2RR catalysts.
  • 加载中
    1. [1]

      JIN R C, ZENG C J, ZHOU M, CHEN Y X. Chem. Rev., 2016, 116(18):10346-10413.

    2. [2]

      LU Y Z, CHEN W. J. Am. Chem. Soc., 2012, 41(9):3594-3623.

    3. [3]

      CAI X, HU W G, XU S, YANG D, CHEN M Y, SHU M, SI R, DING W P, ZHU Y. J. Am. Chem. Soc., 2020, 142(9):4141-4153.

    4. [4]

      LIU Y Y, CHAI X Q, CAI X, CHEN M Y, JIN R C, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2018, 57(31):9775-9779.

    5. [5]

      ZENG C J, CHEN Y X, KIRSCHBAUM K, LAMBRIGHT K J, JIN R C. Science, 2016, 354(6319):1580-1584.

    6. [6]

      JIN R C. Nanoscale, 2010, 2(3):343-362.

    7. [7]

      LI X, TAKANO S, TSUKUDA T. J. Phys. Chem. C, 2021, 125(42):23226-23230.

    8. [8]

      ZHANG X L, ZHANG Y Y, CHENG C, YANG Z X, HERMANSSON K. Nanoscale, 2020, 12(23):12497-12507.

    9. [9]

      HASEGAWA S, TAKANO S, HARANO K, TSUKUDA T. JACS Au, 2021, 1(5):660-668.

    10. [10]

      KONG J, QIN Y H, WANG T L, WANG C W. Int. J. Hydrogen Energy, 2020, 45(51):27254-27262.

    11. [11]

      XU J Y, XU S, CHEN M Y, ZHU Y. Nanoscale, 2020, 12(10):6020-6028.

    12. [12]

      ZHUANG S L, CHEN D, LIAO L W, ZHAO Y, XIA N, ZHANG W H, WANG C M, YANG J, WU Z K. Angew.Chem., Int. Ed., 2020, 59(8):3073-3077.

    13. [13]

      ZHUANG Z H, CHEN W. Analyst, 2020, 145(7):2621-2630.

    14. [14]

      ZHANG J W, LI H, LI J Q, CHEN Y, QU P, ZHAI Q G. Dalton Trans., 2021, 50(47):17482-17486.

    15. [15]

      WANG P, HUANG C H, CHEN X L, LU C Z. Chin. J. Struct. Chem., 2021, 40(11):1489-1495.

    16. [16]

      HESARI M, DING Z F. Acc. Chem. Res., 2017, 50(2):218-230.

    17. [17]

      KHAN R W, NAVEEN M H, BANG J H. ACS Energy Lett., 2021, 6(8):2713-2725.

    18. [18]

      LEES E W, MOWBRAY B A W, PARLANE F G L, BERLINGUETTE C P. Nat. Rev. Mater., 2022, 7(1):55-64.

    19. [19]

      ZHAO S, JIN R X, JIN R C. ACS Energy Lett., 2018, 3(2):452-462.

    20. [20]

      ZHU W L, MICHALSKY R, METIN O, LV H F, GUO S J, WRIGHT C J, SUN X L, PETERSON A A, SUN S H. J.Am. Chem. Soc., 2013, 135(45):16833-16836.

    21. [21]

      MISTRY H, RESKE R, ZENG Z. H, ZHAO Z J, GREELEY J, STRASSER P, ROLDAN C B. J. Am. Chem. Soc., 2014,136(47):16473-16476.

    22. [22]

      ZHU W L, ZHANG Y J, ZHANG H Y, LV H F, LI Q, MICHALSKY R, PETERSON A A, SUN S H. J. Am. Chem.Soc., 2014, 136(46):16132-16135.

    23. [23]

      FU J J, ZHU W L, CHEN Y, YIN Z Y, LI Y Y, LIU J, ZHANG H Y, ZHU J J, SUN S H. Angew. Chem., Int. Ed., 2019,58(40):14100-14103.

    24. [24]

      WELCH A J, DUCHENE J S, TAGLIABUE G, DAVOYAN A, CHENG W H, ATWATER H A. ACS Appl. Energy Mater., 2019, 2(1):164-170.

    25. [25]

      ZHAO S, AUSTIN N, LI M, SONG Y B, HOUSE S D, BERNHARD S, YANG J C, MPOURMPAKIS G, JIN R C.ACS Catal., 2018, 8(6):4996-5001.

    26. [26]

      LI S T, NAGARAJAN A V, ALFONSO D R, SUN M K, KAUFFMAN D R, MPOURMPAKIS G, JIN R C. Angew.Chem., Int. Ed., 2021, 60(12):6351-6356.

    27. [27]

      QIN L B, SUN F, MA X S, MA G Y, TANG Y, WANG L K, TANG Q, JIN R C, TANG Z H. Angew. Chem., Int. Ed.,2021, 60(50):26136-26141.

    28. [28]

      ALFONSO D R, KAUFFMAN D, MATRANGA C. J. Chem. Phys., 2016, 144(18):184705.

    29. [29]

      CAI X, SARANYA G, SHEN K Q, CHEN M Y, SI R, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2019, 58(29):9964-9968.

    30. [30]

      DAS A, LI T, NOBUSADA K, ZENG Q, ROSI N L, JIN R. J. Am. Chem. Soc., 2012, 134(50):20286-20289.

    31. [31]

      SHICHIBU Y, NEGISHI Y, WATANABE T, CHAKI N K, KAWAGUCHI H, TSUKUDA T. J. Phys. Chem. C, 2007,111(22):7845-7847.

    32. [32]

      NEGISHI Y, NOBUSADA K, TSUKUDA T J. Am. Chem. Soc., 2005, 127(14):5261-5270.

    33. [33]

      GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Nature, 2016, 529(7584):68-71.

    34. [34]

      LU Y Z, ZHANG C M, LI X K, FROJD A R, XING W, CLAYBORNE A Z, CHEN W. Nano Energy, 2018, 50:316-322.

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    10. [10]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    17. [17]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    19. [19]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(17)
  • Abstract views(923)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return