Citation: NIU Xiang-Heng,  WANG Meng-Zhu,  HU Pan-Wang,  LIU Bang-Xiang. A Ratiometric Electroanalytical Method Based on Diazotization Reaction for Detection of Nitrite[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 869-877. doi: 10.19756/j.issn.0253-3820.221083 shu

A Ratiometric Electroanalytical Method Based on Diazotization Reaction for Detection of Nitrite

  • Corresponding author: NIU Xiang-Heng, niuxiangheng@ujs.edu.cn
  • Received Date: 20 February 2022
    Revised Date: 3 March 2022

    Fund Project: Supported by the Key Laboratory of Functional Molecular Solids, Ministry of Education(No. FMS202001) and the National Natural Science Foundation of China(No. 21605061).

  • Excessive nitrite in food and water can cause many hazards to human health and the environment, therefore, it is very important to develop reliable, convenient and low-cost methods for nitrite detection. In this study, o-phenylenediamine(OPD) was used as a probe to develop a convenient ratiometric electrochemical method to realize high-performance detection of nitrite on bare screen-printed electrodes. The OPD probe could produce an oxidation signal at a low potential, and nitrite could produce another oxidation signal at a high potential. When OPD coexisted with nitrite, a diazotization reaction occurred in the acidic environment. With the increase of nitrite, free OPD decreased due to reaction consumption, resulting in the decreasing oxidation signal of the probe, while the oxidation signal of nitrite was gradually increased. Based on this principle, ratiometric electrochemical measurement of nitrite was achieved with a linear range of 10-300 μmol/L and a detection limit of 4.7 μmol/L. Accurate determination of the target in environmental water and pickle water samples was also demonstrated. The ratiometric electrochemical method with excellent sensitivity and accuracy, strong anti-interference ability, simple operation and low cost showed broad application prospects.
  • 加载中
    1. [1]

      WARTHESEN J J, SCANLAN R A, BILLS D D, LIBBEY L M. J. Agric. Food Chem., 1975, 23(5):898-902.

    2. [2]

      KIM-SHAPIRO D B, GLADWIN M T, PATEL R P, HOGG N. J. Inorg. Biochem., 2005, 99(1):237-246.

    3. [3]

      World Health Organization, Guidelines for Drinking-water Quality, 2011, 216:303-304.

    4. [4]

      WANG Q H, YU L J, LIU Y, LIN L, LU R G, ZHU J P, HE L, LU Z L. Talanta, 2017, 165:709-720.

    5. [5]

      KODAMATANI H, YAMAZAKI S, SAITO K, TOMIYASU T, KOMATSU Y. J. Chromatogr. A, 2009, 1216:3163-3167.

    6. [6]

      HE L J, ZHANG K G, WANG C J, LUO X L, ZHANG S S. J. Chromatogr. A, 2011, 1218:3595-3600.

    7. [7]

      HELALEH M I H, KORENAGA T. J. Chromatogr. B, 2000, 744:433-437.

    8. [8]

      DANIEL W L, HAN M S, LEE J S, MIRKIN C A. J. Am. Chem. Soc., 2009, 131(18):6362-6363.

    9. [9]

      TAWEEKARN T, WONGNIRAMAIKUL W, LIMSAKUL W, SRIPROM W, PHAWACHALOTORN C, CHOODUM A. Microchim. Acta, 2020, 187(12):643.

    10. [10]

      CHEN Y Y, ZHAO C X, YUE G Z, YANG Z P, WANG Y Y, RAO H B, ZHANG W, JIN B, WANG X X. Food Chem., 2020, 317:126361.

    11. [11]

      LO H S, LO K W, YEUNG C F, WONG C Y. Anal. Chim. Acta, 2017, 990:135-140.

    12. [12]

      XIONG Y M, LI M M, LIU H Q, XUAN Z H, YANG J, LIU D B. Nanoscale, 2017, 9(5):1811-1815.

    13. [13]

      KUMAR V V, ANTHONY S P. Anal. Chim. Acta, 2014, 842:57-62.

    14. [14]

      ZHANG H J, QI S D, DONG Y L, CHEN X J, XU Y Y, MA Y H, CHEN X G. Food Chem., 2014, 151:429-434.

    15. [15]

      ZHANG H M, KANG S H, WANG G Z, ZHANG Y X, ZHAO H J. ACS Sens., 2016, 1(7):875-881.

    16. [16]

      REN H H, FAN Y, WANG B, YU L P. J. Agric. Food Chem., 2018, 66(33):8851-8858.

    17. [17]

      MENON S, VIKRAMAN A E, JESNY S, KUMAR K G. J. Fluoresc., 2016, 26(1):129-134.

    18. [18]

      LI B L, LI Y S, GAO X F. Food Chem., 2019, 274:162-169.

    19. [19]

      LIU Y N, XUE H Y, LIU J H, WANG Q Z, WANG L. Microchim. Acta, 2018, 185(2):129.

    20. [20]

      JIANG J J, FAN W J, DU X Z. Biosens. Bioelectron., 2014, 51:343-348.

    21. [21]

      ZHU W X, ZHANG Y, GONG J D, MA Y Y, SUN J, LI T, WANG J L. ACS Sens., 2019, 4(11):2980-2987.

    22. [22]

      KOZUB B R, REES N V, COMPTON R G. Sens. Actuators, B, 2010, 143(2):539-546.

    23. [23]

      ZHU N N, XU Q, LI S N, GAO H. Electrochem. Commun., 2009, 11(12):2308-2311.

    24. [24]

      ZHOU L, WANG J P, GAI L, LI D J, LI Y B. Sens. Actuators, B, 2013, 181:65-70.

    25. [25]

      BAGHERI H, HAJIAN A, REZAEI M, SHIRZADMEHR A. J. Hazard. Mater., 2017, 324:762-772.

    26. [26]

      FU L, YU S H, THOMPSON L, YU A M. RSC Adv., 2015, 5(50):40111-40116.

    27. [27]

      ZHAO X M, LI N, JING M L, ZHANG Y F, WANG W, LIU L S, XU Z W, LIU L Y, LI F Y, WU N. Electrochim.Acta, 2019, 295:434-443.

    28. [28]

      WANG P, WANG M Y, ZHOU F Y, YANG G H, QU L L, MIAO X M. Electrochem. Commun., 2017, 81:74-78.

    29. [29]

      KUNG C W, CHANG T H, CHOU L Y, HUPP J T, FARHA O K, HO K C. Electrochem. Commun., 2015, 58:51-56.

    30. [30]

    31. [31]

      LI G L, XIA Y H, TIAN Y L, WU Y Y, LIU J, HE Q G, CHEN D C. J. Electrochem. Soc., 2019, 166(12):B881-B895.

    32. [32]

      LI X J, PING J F, YING Y B. TrAC-Trends Anal. Chem., 2019, 113:1-12.

    33. [33]

      CHEN H Y, YANG T, LIU F Q, LI W H. Sens. Actuators, B, 2019, 286:401-407.

    34. [34]

      LEE M H, KIM J S, SESSLER J L. Chem. Soc. Rev., 2015, 44(13):4185-4191.

    35. [35]

      ZIVARI-MOSHFEGH F, NEMATOLLAHI D, KHORAM M M, RAHIMI A. Electrochim. Acta, 2020, 354:136700.

    36. [36]

      WANG M Z, LIU P, ZHU H J, LIU B X, NIU X H. Biosensors, 2021, 11(8):280.

    37. [37]

      TSAI T H, THIAGARAJAN S, CHEN S M. J. Agric. Food Chem., 2010, 58(8):4537-4544.

    38. [38]

      BARHAM A S. Int. J. Electrochem. Sci., 2015, 10(6):4742-4751.

    39. [39]

      SCHINDLER S, BECHTOLD T. J. Electroanal. Chem., 2019, 836:94-101.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    3. [3]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    15. [15]

      Fangqi Yang . Teaching Practice and Reflection on Contact Angle Measurement Instrument in Material Chemistry Analysis. University Chemistry, 2025, 40(11): 397-401. doi: 10.12461/PKU.DXHX202412008

    16. [16]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    17. [17]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    18. [18]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    19. [19]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    20. [20]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

Metrics
  • PDF Downloads(12)
  • Abstract views(1047)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return