Citation: HU Rong-Rong,  MA Zi-Ji,  YUE Hao,  LIN Xiao-Xiao,  WEN Zuo-Ying,  ZHANG Wei-Jun,  GU Xue-Jun,  TANG Xiao-Feng. Investigation of Chlorine-initiated Oxidation Reactions of Nopinone by Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 948-956. doi: 10.19756/j.issn.0253-3820.221081 shu

Investigation of Chlorine-initiated Oxidation Reactions of Nopinone by Vacuum Ultraviolet Photoionization Mass Spectrometry

  • Corresponding author: LIN Xiao-Xiao, lxx1989@aiofm.ac.cn
  • Received Date: 18 February 2022
    Revised Date: 4 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 42075113, 42120104007, 91961123).

  • A microwave discharge fast flow tube reactor was used to simulate chlorine-initiated oxidation of nopinone(C9H14O). The chemical compositions of radicals and stable products from the oxidation reactions were measured via a home-made vacuum ultraviolet photoionization time of flight mass spectrometer(VUVPI-TOFMS). The kinetic experiments of main radicals and products were also performed. By comparing the results of kinetic experiments and simulation calculations of key species,the reaction pathways of key species in the reaction were further explored. This study showed that the reaction of nopinone with Cl produced radical C9H13O via the hydrogen abstraction pathway. The radical C9H13O reacted with O2 to mainly generate peroxy radical C9H13OO2. Under NOx(NO and NO2) free condition, peroxy radical C9H13OO2 reacted with itself to produce radical C9H13OO, carbonyl compounds C9H12O2 and C9H13OOH. In addition, the peroxy radical C9H13OO2 could also react with HO2 to produce hydroperoxide C9H13OO2H. The mechanism of chlorine-initiated oxidation reactions of nopinone was also revealed through experimental studies and simulation calculations.
  • 加载中
    1. [1]

      DAVIS M E, TAPSCOTT C, STEVENS P S. Int. J. Chem. Kinet., 2005, 37(9):522-531.

    2. [2]

      JAOUI M, KAMENS R. J. Atoms. Chem., 2003, 44(3):259-297.

    3. [3]

      KAMINSKI M, FUCHS H, ACIR I H, BOHN B, BRAUERS T, DORN H P, HÄSELER R, HOFZUMAHAUS A, LI X, LUTZ A, NEHR S, ROHRER F, TILLMANN R, VEREECKEN L, WEGENER R. WAHNER A. Atmos.Chem. Phys., 2017, 17(11):6631-6650.

    4. [4]

      SATO K, JIA T, TANABE K, MORINO Y, KAJII Y, IMAMURA T. Atmos. Environ., 2016, 130:127-135.

    5. [5]

    6. [6]

    7. [7]

      LEWIS P J, BENNETT K A, HARVEY J N. Phys. Chem. Chem. Phys., 2005, 7(8):1643-1649.

    8. [8]

      CALOGIROU A, JENSEN N R, NIELSEN C J, KOTZIAS D, HJORTH J. Environ. Sci. Technol., 1999, 33(3):453-460.

    9. [9]

      BRETON M L, HALLQUISTÅM, PATHAK R K, SIMPSON D, WANG Y, JOHANSSON J, ZHENG J, YANG Y, SHANG D, WANG H, LIU Q, CHAN C, WANG T, BANNAN T J, PRIESTLEY M, PERCIVAL C J, SHALLCROSS D E, LU K, GUO S, HU M, HALLQUIST M. Atmos. Chem. Phys., 2018, 18(17):13013-13030.

    10. [10]

      THORNTON J A, KERCHER J P, RIEDEL T P, WAGNER N L, COZIC J, HOLLOWAY J S, DUBÉW P, WOLFE G M, QUINN P K, MIDDLEBROOK A M, ALEXANDER B, BROWN S S. Nature, 2010, 464(7286):271-274.

    11. [11]

      LIU X, QU H, HUEY L G, WANG Y, SJOSTEDT S, ZENG L, LU K, WU Y, HU M, SHAO M, ZHU T, ZHANG Y.Environ. Sci. Technol., 2017, 51(17):9588-9595.

    12. [12]

      SUN Y, ZHANG Q, HU J, CHEN J, WANG W. Chemosphere, 2015, 119:626-633.

    13. [13]

      MA F, DING Z, ELM J, XIE H B, YU Q, LIU C, LI C, FU Z, ZHANG L, CHEN J. Environ. Sci. Technol., 2018, 52(17):9801-9809.

    14. [14]

      MELLOUKI A, BRAS G L. Mater. Sci. Forum., 1999, 301:47-68.

    15. [15]

      TYNDALL G S, COX R A, GRANIER C, LESCLAUX R, MOORTGAT G K, PILLING M J, RAVISHANKARA A R, WALLINGTON T J. J. Geophys. Res. Atmos., 2001, 106(D11):12157-12182.

    16. [16]

    17. [17]

    18. [18]

      WEN Z Y, TANG X F, WANG C C, FITTSCHEN C, WANG T, ZHANG C H, YANG J Z, PAN Y, LIU F Y, ZHANG W J. Int. J. Chem. Kinet., 2019, 51(3):178-188.

    19. [19]

    20. [20]

      BOSSOLASCO A, FARAGÓE P, SCHOEMAECKER C, FITTSCHEN C. Chem. Phys. Lett., 2014593:7-13.

    21. [21]

      ZHANG C, SHAMAS M, ASSALI M, TANG X, ZHANG W, PILLIER L, SCHOEMAECKER C, FITTSCHEN C.Photonics, 2021, 8(8):296.

    22. [22]

      NEEMAN E M, AVILÉS-MORENO J R, HUET T R. Phys. Chem. Chem. Phys., 2017, 19(21):13819-13827.

    23. [23]

      CAO M, CHEN J, FANG W, LI Y, GE S, SHAN X, LIU F, ZHAO Y, WANG Z, SHENG L. Eur. J. Mass Spectrom., 2014, 20(6):419-468.

    24. [24]

      DESAIN J D, KLIPPENSTEIN S J, MILLER J A, TAATJES C A. J. Phys. Chem. A, 2003, 107(22):4415-4427.

    25. [25]

      MELONI G, ZOU P, KLIPPENSTEIN S J, AHMED M, LEONE S R, TAATJES C A, OSBORN D L. J. Am. Chem.Soc., 2006, 128(41):13559-13567.

    26. [26]

      TANG X F, LIN X X, GARCIA G A, LOISON J C, GOUID Z, ABDALLAH H H, FITTSCHEN C, HOCHLAF M, GU X J, ZHANG W J, NAHON L. Chem. Commun., 2020, 56(99):15525-15528.

    27. [27]

      WEN Z Y, LIN X X, TANG X F, LONG B, WANG C C, ZHANG C H, FITTSCHEN C, YANG J Z, GU X J, ZHANG W J.Phys. Chem. Chem. Phys., 2021, 23(38):22096-22102.

    28. [28]

      MELONI G, SELBY T M, GOULAY F, STEPHEN R L, DAVID L O, CRAIG A T. J. Am. Chem. Soc., 2007, 129(45):14019-14025.

    29. [29]

      JENKIN M E, YOUNG J C, RICKARD A R. Atmos. Chem. Phys., 2015, 15(20):11433-11459.

    30. [30]

      MARICQ M M, SZENTE J J, KAISER E W. J. Phys. Chem., 1993, 97(30):7970-7977.

    31. [31]

      ATKINSON R, BAULCH D L, COX R A, CROWLEY J N, HAMPSON R F, HYNES R G, JENKIN M E, ROSSI M J, TROE J. Atmos. Chem. Phys., 2004, 4(6):1461-1738.

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    4. [4]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(12)
  • Abstract views(907)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return