Citation: JI Mao-Jing,  HAI Xin,  ZHOU Lu,  LIU An-Nan,  CUI Zhu-Mei,  BI Sai. raphene Quantum Dots-based Fluorescence “Turn-On” Probe for Selective Detection of Fe(Ⅱ)[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1005-1013. doi: 10.19756/j.issn.0253-3820.221076 shu

raphene Quantum Dots-based Fluorescence “Turn-On” Probe for Selective Detection of Fe(Ⅱ)

  • Corresponding author: CUI Zhu-Mei,  BI Sai, 
  • Received Date: 16 February 2022
    Revised Date: 12 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22076087, 22004077, 81802923) and the Natural Science Foundation of Shandong Province, China (Nos.ZR2020JQ08, ZR2019MH121).

  • A "turn-on" fluorescence probe was developed based on terephthalic acid functionalized graphene quantum dots (TPA@GQDs) for highly selective detection of Fe2+. The TPA@GQDs were prepared by a one-step hydrothermal method using GO as carbon source and terephthalic acid as modifying group, where potassium hydroxide served as the cutting agent and hydrogen peroxide as the auxiliary cutting agent. The structure and component of TPA@GQDs were studied by a variety of characterization methods, and the optical properties and feasibility of TPA@GQDs as a fluorescent probe were further explored. Based on the electron-donating function of Fe2+ to induce the fluorescence enhancement of TPA@GQDs, a "turn-on" fluorescent probe was constructed for sensitive detection of Fe2+. The linear ranges were from 0.33 to 20 μmol/L and 20 to 60 μmol/L, with the limit of detection (3σ) of 0.33 μmol/L, and the corresponding linear equations were F/F0=0.0638C+1.1385 (R2=0.9974) and F/F0=0.0244C+1.9215 (R2=0.9989), respectively. Moreover, this system demonstrated good selectivity toward Fe2+, and Fe3+ had no effect on the detection of Fe2+. Finally, the proposed probe was applied to accurate determination of Fe2+ in underground water with recoveries of 98.5%-102.0%, showing broad application prospects in water quality monitoring.
  • 加载中
    1. [1]

      HIDER R C, KONG X. Dalton Trans., 2013, 42(9):3220-3229.

    2. [2]

      ZHANG Z, XUE W, YANG J, ZHAO Y, GUO J. Anal. Biochem., 2021, 623(1):114171.

    3. [3]

      JIANG M, XU S, YU Y, GAO Y, YIN Z, LI J, ZHANG X, YU H, CHEN B. Spectrochim. Acta, Part A, 2022, 264:120275.

    4. [4]

      LEE Y H, VERWILST P, KIM H S, JU J, KIM J S, KIM K. Chem. Commun., 2019, 55(81):12136-12139.

    5. [5]

    6. [6]

      LIU G, LI B, LIU Y, FENG Y, JIA D, ZHOU Y. Appl. Surf. Sci., 2019, 487:1167-1175.

    7. [7]

      ZHU Y, PAN D, HU X, HAN H, LIN M, WANG C. Sens. Actuators, B, 2017, 243:1-7.

    8. [8]

      SACMACI S, KARTAL S. Anal. Chim. Acta, 2008, 623(1):46-52.

    9. [9]

      CHEN X, JI J, SHI G, XUE Z, ZHOU X, ZHAO L, FENG S. RSC Adv., 2020, 10(54):32897-32905.

    10. [10]

      SUN Y L, ZHANG X P, ZHAO C X, LIU X, SHU Y, WANG J H, LIU N. Anal. Chim. Acta, 2021, 1183:338973.

    11. [11]

      XIA C, HAI X, CHEN X W, WANG J H. Talanta, 2017, 168:269-278.

    12. [12]

      LIU Y, TU D, ZHU H, MA E, CHEN X. Nanoscale, 2013, 5(4):1369-1384.

    13. [13]

      PACINI V A, INGALLINELLA A M, SANGUINETTI G. Water Res., 2005, 39(18):4463-4475.

    14. [14]

      DU F, CHENG Z, TAN W, SUN L, RUAN G. Spectrochim. Acta, Part A, 2020, 226:117602.

    15. [15]

      PHAN L M T, HOANG T X, CHO S. Biosensors, 2022, 12(1):41.

    16. [16]

      YAN Y, GONG J, CHEN J, ZENG Z, HUANG W, PU K, LIU J, CHEN P. Adv. Mater., 2019, 31(21):e1808283.

    17. [17]

      HAI X, LI Y, YU K, YUE S, LI Y, SONG W, BI S, ZHANG X. Chin. Chem. Lett., 2021, 32(3):1215-1219.

    18. [18]

      LI M, CHEN T, GOODING J J, LIU J. ACS Sens., 2019, 4(7):1732-1748.

    19. [19]

      TIAN P, TANG L, TENG K S, LAU S P. Mater. Today Chem., 2018, 10:221-258.

    20. [20]

      LU H T, LI W J, DONG H F, WEI M L. Small, 2019, 15(36):1902136.

    21. [21]

      ZHU X, YU J, YAN Y, SONG W, HAI X. Talanta, 2022, 236:122874.

    22. [22]

      SWEETMAN M J, HICKEY S M, BROOKS D A, HAYBALL J D, PLUSH S E. Adv. Funct. Mater., 2019, 29(14):1808740.

    23. [23]

      QI B P, HU H, BAO L, ZHANG Z L, TANG B, PENG Y, WANG B S, PANG D W. Nanoscale, 2015, 7(14):5969-5973.

    24. [24]

      LI L, WU G, YANG G, PENG J, ZHAO J, ZHU J J. Nanoscale, 2013, 5(10):4015-4039.

    25. [25]

      HAI X, ZHU X, YU K, YUE S, SONG W, BI S. Biosens. Bioelectron., 2021, 192:113544.

    26. [26]

    27. [27]

    28. [28]

      HAI X, GUO Z, LIN X, CHEN X, WANG J. ACS Appl. Mater. Interfaces, 2018, 10(6):5853-5861.

    29. [29]

      HASSAN M, HAQUE E, REDDY K R, MINETT A I, CHEN J, GOMES V G. Nanoscale, 2014, 6(20):11988-11994.

    30. [30]

      AMELIA M, FLAMINI R, LATTERINI L. Langmuir, 2010, 26(12):10129-10134.

    31. [31]

      FUENTE E, MENENDEZ J A, DIEZ M A, SUAREZ D, MONTES-MORAN M A. J. Phys. Chem. B, 2003, 107(26):6350-6359.

    32. [32]

      BINOY J, JOE I H, JAYAKUMAR V S. J. Raman Spectrosc., 2005, 36(12):1091-1100.

    33. [33]

      LI Y, ZHAO Y, CHENG H, HU Y, SHI G, DAI L, QU L. J. Am. Chem. Soc., 2012, 134(1):15-18.

    34. [34]

      PAN D, ZHANG J, LI Z, WU M. Adv. Mater., 2010, 22(6):734-738.

    35. [35]

      HAI X, WANG Y, HAO X, CHEN X, WANG J. Sens. Actuators, B, 2018, 268:61-69.

    36. [36]

      TIAN Y, WANG X, ZHANG D, SHI X, WANG S. J. Photochem. Photobiol., A, 2008, 199(2-3):224-229.

    37. [37]

      LI C, LI D, MA C, LIU Y. J. Mol. Liq., 2016, 224:83-88.

    38. [38]

      ZHUANG Z, BU F, LUO W, PENG H, CHEN S, HU R, QIN A, ZHAO Z, TANG B Z. J. Mater. Chem. C, 2017, 5(7):1836-1842.

    39. [39]

      WU Y, GUO T, SHU D, ZHANG W, LUAN F, SHI L, GUO D. Luminescence, 2018, 33(5):855-862.

    40. [40]

      CHEN T, YANG F, WU X, CHEN Y, YANG G. Carbon, 2020, 167:196-201.

    41. [41]

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    9. [9]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    10. [10]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    18. [18]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    19. [19]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    20. [20]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

Metrics
  • PDF Downloads(9)
  • Abstract views(1124)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return