Citation:
JI Mao-Jing, HAI Xin, ZHOU Lu, LIU An-Nan, CUI Zhu-Mei, BI Sai. raphene Quantum Dots-based Fluorescence “Turn-On” Probe for Selective Detection of Fe(Ⅱ)[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(7): 1005-1013.
doi:
10.19756/j.issn.0253-3820.221076
-
A "turn-on" fluorescence probe was developed based on terephthalic acid functionalized graphene quantum dots (TPA@GQDs) for highly selective detection of Fe2+. The TPA@GQDs were prepared by a one-step hydrothermal method using GO as carbon source and terephthalic acid as modifying group, where potassium hydroxide served as the cutting agent and hydrogen peroxide as the auxiliary cutting agent. The structure and component of TPA@GQDs were studied by a variety of characterization methods, and the optical properties and feasibility of TPA@GQDs as a fluorescent probe were further explored. Based on the electron-donating function of Fe2+ to induce the fluorescence enhancement of TPA@GQDs, a "turn-on" fluorescent probe was constructed for sensitive detection of Fe2+. The linear ranges were from 0.33 to 20 μmol/L and 20 to 60 μmol/L, with the limit of detection (3σ) of 0.33 μmol/L, and the corresponding linear equations were F/F0=0.0638C+1.1385 (R2=0.9974) and F/F0=0.0244C+1.9215 (R2=0.9989), respectively. Moreover, this system demonstrated good selectivity toward Fe2+, and Fe3+ had no effect on the detection of Fe2+. Finally, the proposed probe was applied to accurate determination of Fe2+ in underground water with recoveries of 98.5%-102.0%, showing broad application prospects in water quality monitoring.
-
-
-
[1]
HIDER R C, KONG X. Dalton Trans., 2013, 42(9):3220-3229.
-
[2]
ZHANG Z, XUE W, YANG J, ZHAO Y, GUO J. Anal. Biochem., 2021, 623(1):114171.
-
[3]
JIANG M, XU S, YU Y, GAO Y, YIN Z, LI J, ZHANG X, YU H, CHEN B. Spectrochim. Acta, Part A, 2022, 264:120275.
-
[4]
LEE Y H, VERWILST P, KIM H S, JU J, KIM J S, KIM K. Chem. Commun., 2019, 55(81):12136-12139.
-
[5]
-
[6]
LIU G, LI B, LIU Y, FENG Y, JIA D, ZHOU Y. Appl. Surf. Sci., 2019, 487:1167-1175.
-
[7]
ZHU Y, PAN D, HU X, HAN H, LIN M, WANG C. Sens. Actuators, B, 2017, 243:1-7.
-
[8]
SACMACI S, KARTAL S. Anal. Chim. Acta, 2008, 623(1):46-52.
-
[9]
CHEN X, JI J, SHI G, XUE Z, ZHOU X, ZHAO L, FENG S. RSC Adv., 2020, 10(54):32897-32905.
-
[10]
SUN Y L, ZHANG X P, ZHAO C X, LIU X, SHU Y, WANG J H, LIU N. Anal. Chim. Acta, 2021, 1183:338973.
-
[11]
XIA C, HAI X, CHEN X W, WANG J H. Talanta, 2017, 168:269-278.
-
[12]
LIU Y, TU D, ZHU H, MA E, CHEN X. Nanoscale, 2013, 5(4):1369-1384.
-
[13]
PACINI V A, INGALLINELLA A M, SANGUINETTI G. Water Res., 2005, 39(18):4463-4475.
-
[14]
DU F, CHENG Z, TAN W, SUN L, RUAN G. Spectrochim. Acta, Part A, 2020, 226:117602.
-
[15]
PHAN L M T, HOANG T X, CHO S. Biosensors, 2022, 12(1):41.
-
[16]
YAN Y, GONG J, CHEN J, ZENG Z, HUANG W, PU K, LIU J, CHEN P. Adv. Mater., 2019, 31(21):e1808283.
-
[17]
HAI X, LI Y, YU K, YUE S, LI Y, SONG W, BI S, ZHANG X. Chin. Chem. Lett., 2021, 32(3):1215-1219.
-
[18]
LI M, CHEN T, GOODING J J, LIU J. ACS Sens., 2019, 4(7):1732-1748.
-
[19]
TIAN P, TANG L, TENG K S, LAU S P. Mater. Today Chem., 2018, 10:221-258.
-
[20]
LU H T, LI W J, DONG H F, WEI M L. Small, 2019, 15(36):1902136.
-
[21]
ZHU X, YU J, YAN Y, SONG W, HAI X. Talanta, 2022, 236:122874.
-
[22]
SWEETMAN M J, HICKEY S M, BROOKS D A, HAYBALL J D, PLUSH S E. Adv. Funct. Mater., 2019, 29(14):1808740.
-
[23]
QI B P, HU H, BAO L, ZHANG Z L, TANG B, PENG Y, WANG B S, PANG D W. Nanoscale, 2015, 7(14):5969-5973.
-
[24]
LI L, WU G, YANG G, PENG J, ZHAO J, ZHU J J. Nanoscale, 2013, 5(10):4015-4039.
-
[25]
HAI X, ZHU X, YU K, YUE S, SONG W, BI S. Biosens. Bioelectron., 2021, 192:113544.
-
[26]
-
[27]
-
[28]
HAI X, GUO Z, LIN X, CHEN X, WANG J. ACS Appl. Mater. Interfaces, 2018, 10(6):5853-5861.
-
[29]
HASSAN M, HAQUE E, REDDY K R, MINETT A I, CHEN J, GOMES V G. Nanoscale, 2014, 6(20):11988-11994.
-
[30]
AMELIA M, FLAMINI R, LATTERINI L. Langmuir, 2010, 26(12):10129-10134.
-
[31]
FUENTE E, MENENDEZ J A, DIEZ M A, SUAREZ D, MONTES-MORAN M A. J. Phys. Chem. B, 2003, 107(26):6350-6359.
-
[32]
BINOY J, JOE I H, JAYAKUMAR V S. J. Raman Spectrosc., 2005, 36(12):1091-1100.
-
[33]
LI Y, ZHAO Y, CHENG H, HU Y, SHI G, DAI L, QU L. J. Am. Chem. Soc., 2012, 134(1):15-18.
-
[34]
PAN D, ZHANG J, LI Z, WU M. Adv. Mater., 2010, 22(6):734-738.
-
[35]
HAI X, WANG Y, HAO X, CHEN X, WANG J. Sens. Actuators, B, 2018, 268:61-69.
-
[36]
TIAN Y, WANG X, ZHANG D, SHI X, WANG S. J. Photochem. Photobiol., A, 2008, 199(2-3):224-229.
-
[37]
LI C, LI D, MA C, LIU Y. J. Mol. Liq., 2016, 224:83-88.
-
[38]
ZHUANG Z, BU F, LUO W, PENG H, CHEN S, HU R, QIN A, ZHAO Z, TANG B Z. J. Mater. Chem. C, 2017, 5(7):1836-1842.
-
[39]
WU Y, GUO T, SHU D, ZHANG W, LUAN F, SHI L, GUO D. Luminescence, 2018, 33(5):855-862.
-
[40]
CHEN T, YANG F, WU X, CHEN Y, YANG G. Carbon, 2020, 167:196-201.
-
[41]
-
[1]
-
-
-
[1]
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
-
[2]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[3]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[4]
Yuting DU , Jing YUAN , Peiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461
-
[5]
Qiang HU , Zhiqi CHEN , Zhong CHEN , Xu WANG , Weina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086
-
[6]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[7]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[8]
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
-
[9]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135
-
[10]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[11]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[12]
Benhua Wang , Chaoyi Yao , Yiming Li , Qing Liu , Minhuan Lan , Guipeng Yu , Yiming Luo , Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070
-
[13]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[14]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[15]
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
-
[16]
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
-
[17]
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
-
[18]
Wei GAO , Meiqi SONG , Xuan REN , Jianliang BAI , Jing SU , Jianlong MA , Zhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112
-
[19]
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
-
[20]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[1]
Metrics
- PDF Downloads(9)
- Abstract views(1124)
- HTML views(220)
Login In
DownLoad: