Citation: MA Chong-bo,  ZHOU Ming. Investigation on Catalytic Performance of Poly(vinyl alcohol) Amphiphilic Aerogel as Peroxidase Mimics and Its Application in Sensing Glucose[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 535-544. doi: 10.19756/j.issn.0253-3820.221067 shu

Investigation on Catalytic Performance of Poly(vinyl alcohol) Amphiphilic Aerogel as Peroxidase Mimics and Its Application in Sensing Glucose

  • Corresponding author: ZHOU Ming, zhoum@nenu.edu.cn
  • Received Date: 10 February 2022
    Revised Date: 14 March 2022

    Fund Project: the “111” Project of China(No. B18012)the Jilin Provincial Department of Human Resources and Social Security,the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China),Analysis and Testing Center of Northeast Normal University(China)the Natural Science Foundation of Jilin Province,China(No. 212558JC010484610)Supported by the National Natural Science Foundation of China(No. 22004014)the Fundamental Research Funds for the Central Universities of China (Nos. 2412020QD007, JGPY201802, 2412020ZD006, 2412019QD008)

  • A method for synthesis of an amphiphilic aerogel with remarkable peroxidase-like activity was developed by using poly(vinyl alcohol) (PVA) as skeleton and maleic acid(MA) as auxiliary crosslinker.Large amount of carboxyl and ester groups could be exposed on aerogel surface by tuning the dosage of MA, which acted as the active sites and binding sites for the substrate material. A colorimetric method for glucose sensing by the catalyzed chromogenic reaction between 3, 3', 5, 5'-tetramethylbenzidine and H2O2, was thus established. The linear detection range of glucose in buffer system was 17.4-80.0 μmol/L, with limit of detection(3σ) of 17.4 μmol/L. While in diluted human serum, the linear detection range was 27.4 μmol/L-1.0 mmol/L, with limit of detection(3σ) of 27.4 μmol/L. This method was used in detection of glucose in human serum, with recoveries of 96.8%-103.0% and relative standard deviations of 0.8%-3.9%, and the detection results were highly consistent with those obtained from the commercial glucose meter. This study innovatively developed a three-dimensional macroscope organic aerogel as a new type of artificial enzyme, broadening the design philosophy and enriching the synthesis strategy. It was promising in construction of portable sensors by virtue of the lightness in weight and eligible mechanical properties.
  • 加载中
    1. [1]

      UNNIKRISHNAN B, LIEN C W, CHU H W, HUANG C C. J. Hazard. Mater., 2021, 401:123397.

    2. [2]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    3. [3]

      LING P, ZHANG Q, CAO T, GAO F. Angew. Chem., Int. Ed., 2018, 57(23):6819-6824.

    4. [4]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    5. [5]

      ZHANG R, YAN X, FAN K. Acc. Mater. Res., 2021, 2(7):534-547.

    6. [6]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    7. [7]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X.Nat. Nanotechnol., 2007, 2(9):577-583.

    8. [8]

      CHEN Z, JI H, LIU C, BING W, WANG Z, QU X. Angew. Chem., Int. Ed., 2016, 55(36):10732-10736.

    9. [9]

      TAO Y, JU E, REN J, QU X. Adv. Mater., 2015, 27(6):1097-1104.

    10. [10]

      DAS B, FRANCO J L, LOGAN N, BALASUBRAMANIAN P, KIM M I, CAO C. Nano-Micro Lett,, 2021, 13(1):193.

    11. [11]

      LIU M, MOU J, XU X, ZHANG F, XIA J, WANG Z. Talanta, 2020, 220:121374.

    12. [12]

      PRATSINIS A, KELESIDIS G A, ZUERCHER S, KRUMEICH F, BOLISETTY S, MEZZENGA R, LEROUX J C,SOTIRIOU G A. ACS Nano, 2017, 11(12):12210-12218.

    13. [13]

      CHENG L, WU F, BAO H, LI F, XU G, ZHANG Y, NIU W. Small, 2021, 17(47):2104083.

    14. [14]

      MANSUR A A P, LEONEL A G, KRAMBROCK K, MANSUR H S. Catal. Today, 2021, DOI:10.1016/j.cattod.2021.11.018.

    15. [15]

      OROZCO J, GARCÍA-GRADILLA V, D’AGOSTINO M, GAO W, CORTÉS A, WANG J. ACS Nano, 2013, 7(1):818-824.

    16. [16]

      HE F, MI L, SHEN Y, MORI T, LIU S, ZHANG Y. ACS Appl. Mater. Interfaces, 2018, 10(41):35327-35333.

    17. [17]

      LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T,LIU H. Angew. Chem., Int. Ed., 2019, 58(36):12624-12631.

    18. [18]

      SHEN J, REES T W, ZHOU Z, YANG S, JI L, CHAO H. Biomaterials, 2020, 251:120079.

    19. [19]

      JIN T, LI Y L, JING W J, LI Y C, FAN L Z, LI X H. Chem. Commun., 2020, 56(4):659-662.

    20. [20]

      WEN S H, ZHONG X L, WU Y D, LIANG R P, ZHANG L, QIU J D. Anal. Chem., 2019, 91(10):6487-6497.

    21. [21]

      PRASAD S N, WEERATHUNGE P, KARIM M N, ANDERSON S, HASHMI S, MARIATHOMAS P D, BANSAL V, RAMANATHAN R. Anal. Bioanal. Chem., 2021, 413(5):1279-1291.

    22. [22]

      XI J Q, WEI G, AN L F, XU Z B, XU Z L, FAN L, GAO L Z. Nano Lett., 2020, 20(1):800-800.

    23. [23]

      SINGH N, NAVEENKUMAR S K, GEETHIKA M, MUGESH G. Angew. Chem., Int. Ed., 2021, 60(6):3121-3130.

    24. [24]

      YILDIRIM D, GOKCAL B, BUBER E, KIP C, DEMIR M C, TUNCEL A. Chem. Eng. J., 2021, 403:126357.

    25. [25]

      MA C B, XU Y, WU L, WANG Q, ZHENG J J, REN G, WANG X, GAO X, ZHOU M, WANG M, WEI H. Angew.Chem,. Int. Ed., 2022, DOI:10.1002/ange.202116170.

    26. [26]

      WANG L, GAO F, WANG A, CHEN X, LI H, ZHANG X, ZHENG H, JI R, LI B, YU X, LIU J, GU Z, CHEN F,CHEN C. Adv. Mater., 2020, 32(48):2005423.

    27. [27]

      WANG X, SUN X Y, BU T, WANG Q Z, ZHANG H, JIA P, LI L W, WANG L. Acta Biomater., 2021, 135:342-355.

    28. [28]

      WANG Y G, WANG Y Y, WANG F Z, CHI H, ZHAO G H, ZHANG Y, LI T D, WEI Q. J. Colloid Interface Sci.,2022, 606:510-517.

    29. [29]

      VERNEKAR A A, SINHA D, SRIVASTAVA S, PARAMASIVAM P U, D’SILVA P, MUGESH G. Nat. Commun.,2014, 5:5301.

    30. [30]

      CHEN J X, WU W W, HUANG L, MA Q, DONG S J. Chem.-Eur. J., 2019, 25(51):11940-11944.

    31. [31]

      DAVID M, SERBAN A, RADULESCU C, DANET A F, FLORESCU M. Bioelectrochemistry, 2019, 129:124-134.

    32. [32]

      JIANG Z X, LI H, DENG Y Q, HE Y. ACS Sustainable Chem. Eng., 2020, 8(13):5076-5081.

    33. [33]

      KARIM M N, ANDERSON S R, SINGH S, RAMANATHAN R, BANSAL V. Biosens. Bioelectron., 2018, 110:8-15.

    34. [34]

      JIA Z, YUAN X Y, WEI J A, GUO X, GONG Y C, LI J, ZHOU H, ZHANG L, LIU J. ACS Appl. Mater. Interfaces,2021, 13(42):49602-49613.

    35. [35]

      ZENG R J, LUO Z B, ZHANG L J, TANG D P. Anal. Chem., 2018, 90(20):12299-12306.

    36. [36]

      ZHANG Y, LIU Q Y, MA C B, WANG Q Q, YANG M T, DU Y. Theranostics, 2020, 10(11):5064-5073.

    37. [37]

      DING H, HU B, ZHANG B, ZHANG H, YAN X Y, NIE G H, LIANG M M. Nano Res., 2021, 14(3):570-583.

    38. [38]

      FAN K L, XI J Q, FAN L, WANG P X, ZHU C H, TANG Y, XU X D, LIANG M M, JIANG B, YAN X Y, GAO L Z.Nat. Commun., 2018, 9:1440.

    39. [39]

      SINGH N, SAVANUR M A, SRIVASTAVA S, D’SILVA P, MUGESH G. Angew. Chem., Int. Ed., 2017, 56(45):14267-14271.

    40. [40]

      SUN H, ZHAO A, GAO N, LI K, REN J, QU X. Angew. Chem., Int. Ed., 2015, 54(24):7176-7180.

    41. [41]

      KISTLER S S. Nature, 1931, 127:741.

    42. [42]

      GAO X D, HUANG Y D, ZHANG T T, WU Y Q, LI X M. J. Mater. Chem. A, 2017, 5(25):12856-12862.

    43. [43]

      JIANG F, HSIEH Y L. J. Mater. Chem. A, 2014, 2(18):6337-6342.

    44. [44]

      SONG X, CHEN Y, RONG M, XIE Z, ZHAO T, WANG Y, CHEN X, WOLFBEIS O S. Angew. Chem., Int. Ed.,2016, 55(12):3936-3941.

    45. [45]

      YUAN Y, ZHANG C, WANG C, CHEN M. J. Solid State Electrochem., 2015, 19(2):619-627.

    46. [46]

      MA C B, ZHANG Y, LIU Q, DU Y, WANG E. Anal. Chem., 2020, 92(7):5319-5328.

    47. [47]

      MA C B, DU B, WANG E. Adv. Funct. Mater., 2017, 27(10):1604423.

    48. [48]

      LING P, ZHANG Q, CAO T, GAO F. Angew. Chem., Int. Ed., 2018, 57(23):6819-6824.

    49. [49]

      ZHANG Y, WU C, ZHOU X, WU X, YANG Y, WU H, GUO S, ZHANG J. Nanoscale, 2013, 5(5):1816-1819.

    50. [50]

      FAN K, XI J, FAN L, WANG P, ZHU C, TANG Y, XU X, LIANG M, JIANG B, YAN X, GAO L. Nat. Commun.,2018, 9:1440.

    51. [51]

      ZHANG P, SUN D, CHO A, WEON S, LEE S, LEE J, HAN J W, KIM D P, CHOI W. Nat. Commun., 2019, 10:940.

    52. [52]

      VALLABANI N V S, KARAKOTI A S, SINGH S. Colloids Surf., B, 2017, 153:52-60.

    53. [53]

      TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.

    54. [54]

      GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    3. [3]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    8. [8]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Lei Qin Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(8)
  • Abstract views(777)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return