Citation: HAN Xiao-Hong,  HAN Xi,  WANG Rong-Rong,  SHI Chun-Zhen. Metabolic Profiling Analysis of Formaldehyde Degrading Strain of XF-1 Using Gas Chromatography-Time of Flight-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1072-1082. doi: 10.19756/j.issn.0253-3820.221050 shu

Metabolic Profiling Analysis of Formaldehyde Degrading Strain of XF-1 Using Gas Chromatography-Time of Flight-Mass Spectrometry

  • Corresponding author: SHI Chun-Zhen, shichunzhen@btbu.edu.cn
  • Received Date: 25 January 2022
    Revised Date: 21 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.52170106) and the High-level Teacher in Beijing Municipal Universities in the Period of 13th Five-year Plan (No.CIT&TCD201904032).

  • Cooking oil fumes are widely concerned because of the complex composition and the hard-to-degrade characterization. One of the most important pollutants in cooking oil fumes is formaldehyde which is a hazard to human health. In this study, a strain of Bacillus amyloliticus XF-1 screened out in previous work was used for efficiently degrading formaldehyde from the condensate of cooking oil fumes. The previous study found that when formaldehyde was the only carbon source, the biodegradation rate was reduced owing to the inhibition effect to the strain. It was necessary to investigate the metabolic mechanism of strain XF-1 and to illustrate the reason for growth inhibition. The metabolic profiling of XF-1 with different carbon sources and under different culture time conditions was analyzed by gas chromatography-time of flight-mass spectrometry (GC-TOF-MS). The results showed that different carbon sources caused different metabolic profiles of XF-1. The metabolic process was delayed using formaldehyde as the carbon source. The concentrations of cystine, aspartic acid and glutamine were significantly changed, which showed that the cell growth and proliferation were inhibited. This work provided a reference for improving the biodegradation efficiency of cooking oil fumes in the future.
  • 加载中
    1. [1]

      MA Y S, DENG L J, MA P, WU Y, YANG X, XIAO F, DENG Q H. J. Hazard. Mater., 2021, 402:123455.

    2. [2]

      CAO J Y, DING R, WANG Y, CHEN D J, GUO D M, LIANG C M, FENG Z W, CHE Z. Environ. Toxicol. Pharmacol., 2013, 36(2):320-331.

    3. [3]

      ZHANG X Y, HE Y H, LIN Q H, HUANG L L, ZHANG Q W, XU Y Q. Mol. Cell Toxicol., 2020, 16(1):13-24.

    4. [4]

      CHEN H C, WU C F, CHONG I W, WU M T. BMC Public Health, 2018, 18:246.

    5. [5]

      CHEN T Y, FANG Y H, CHEN H L, CHANG C H, HUANG H, CHEN Y S, LIAO K M, WU H Y, CHANG G C, TSAI Y H, WANG C L, CHEN Y M, HUANG M S, SU W C, YANG P C, CHEN C J, HSIAO C F, HSUING C A. Sci. Rep., 2020, 10(1):6774.

    6. [6]

      XUE Y B, JIANG Y, JIN S, LI Y. OncoTargetsTher., 2016, 9:2987-2992.

    7. [7]

      PARKIN S L, WHELAN J, FERLAY L. Statistics Med., 1997, 19(9):1261-1263.

    8. [8]

      LEAL M P, BROCHETTI R A, IGNACIO A, CAMARA N O S, DA PALMA R K, DE OLIVEIRA L V F, DA SILVA D D T, LINO-DOS-SANTOS-FRANCO A. Toxicol. Rep., 2018, 5:512-520.

    9. [9]

      DANGI A K, SHARMA B, HILL R T, SHUKLA P. Crit. Rev. Biotechnol., 2019, 39(1):79-98.

    10. [10]

      GUIMARAES J R, FARAH C R T, MANIERO M G, FADINI P S. J. Environ. Manage., 2012, 107:96-101.

    11. [11]

      MOUSSAVI G, HEIDARIZAD M. Sep. Purif. Technol., 2011, 77(2):187-195.

    12. [12]

      PEREIRA N S, ZAIAT M. J. Hazard. Mater., 2009, 163(2):777-782.

    13. [13]

      EEVERS N, WHITE J C, VANGRONSVELD J, WEYENS N. Advances in Botanical Research, Academic Press, 2017, 83:277-318.

    14. [14]

    15. [15]

    16. [16]

      BYLESJO M, RANTALAINEN M, CLOAREC O, NICHOLSON J K, HOLMES E, TRYGG J. J. Chemom., 2006, 20:341-351.

    17. [17]

      CHONG J, SOUFAN O, LI C, CARAUS I, LI S, BOURQUE G, WISHART D S, XIA J. Nucleic Acids Res., 2018, 46(W1):486-494.

    18. [18]

      SHAO S, ZHOU T, MCGARVEY B D. Appl. Microbiol. Biotechnol., 2012, 94(3):789.

    19. [19]

      KIND T, WOHLGEMUTH G, LEE D Y, LU Y, PALAZOGLU M, SHAHBAZ S, FIEHN O. Anal. Chem., 2009, 81(24):10038-10048.

    20. [20]

      DUNN W B, BROADHURST D, BEGLEY P, ZELENA E, FRANCIS-MCINTYRE S, ANDERSON N, BROWN M, KNOWLES J D, HALSALL A, HASELDEN J N, NICHOLLS A W, WILSON I D, KELL D B, GOODACRE R, HUSERMET C. Nat Protoc., 2011, 6(7):1060-1083.

    21. [21]

    22. [22]

      QIN J F, CHEN H G, CAI W G, YANG T, JIA X P. J. Appl. Ecol., 2011, 22(7):1878-1884.

    23. [23]

      SUNGKEEREE P, WHANGSUK W, DUBBS J, MONGKOLSUK S, LOPRASERT S. Process Biochem., 2016, 51(8):1040-1045.

    24. [24]

      SULLIVAN L B, GUI D Y, HOSIOS A M, BUSH L N, FREINKMAN E, VANDER HEIDEN M G. Cell, 2015, 162(3):552-563.

    25. [25]

      BIRSOY K, WANG T, CHEN W W, FREINKMAN E, ABU-REMAILEH M, SABATINI D M. Cell, 2015, 162(3):540-551.

    26. [26]

    27. [27]

      PHANG J M, DONALD S P, PANDHARE J, LIU Y M. Amino Acids, 2008, 35(4):681-690.

    28. [28]

      PHANG J M, LIU W, ZABIRNYK O. Annu. Rev. Nutr., 2010, 30:441-463.

    29. [29]

      GWANGWA M V, JOUBERT A M, VISAGIE M H. Biol. Res., 2019, 52:15.

    30. [30]

      KOPPULA P, ZHUANG L, GAN B Y. Protein Cell, 2021. 12(8):599-620.

    31. [31]

      CHEN L, ZHANG Z Y, HOSHINO A, ZHENG H D, MORLEY M, ARANY Z, RABINOWITZ J D. Nat. Metab., 2019, 1(3):404-415.

    32. [32]

      LIU X G, OLSZEWSKI K, ZHANG Y L, LIM E W, SHI J J, ZHANG X S, ZHANG J, LEE H, KOPPULA P, LEI G, ZHUANG L, YOU M J, FANG B L, LI W, METALLO C M, POYUROVSKY M V, GAN B Y. Nat. Cell Biol., 2020, 22(4):476-486.

  • 加载中
    1. [1]

      Qian Wu Yuanxia Lv Zixuan Guo Zhihao Zhao Zhimin Zhang Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063

    2. [2]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    3. [3]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    6. [6]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    7. [7]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    10. [10]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    19. [19]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    20. [20]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

Metrics
  • PDF Downloads(9)
  • Abstract views(740)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return