Citation: WEI Liang,  HUANG Xin-Long,  WANG Yan-Li,  YANG Jing,  YAN Fei-Yan,  NING De-Jiao,  TANG Li,  LUO Li-Hong,  WEI Yu-Ning,  YA Yu. Preparation of Hierarchically Porous Carbon Using Different Activators and Its Electrochemical Sensing of Dihydroxybenzene Isomers[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 899-911. doi: 10.19756/j.issn.0253-3820.221048 shu

Preparation of Hierarchically Porous Carbon Using Different Activators and Its Electrochemical Sensing of Dihydroxybenzene Isomers

  • Corresponding author: YA Yu, yayu1026@163.com
  • Received Date: 24 January 2022
    Revised Date: 30 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 21862004), the Natural Science Foundation of Guangxi, China(Nos. 2018GXNSFAA281230, 2018GXNSFAA281228), the Guangxi Agricultural Science and Technology Union Project(No. 202216), the Dominant Research Team Project of Guangxi Academy of Agricultural Sciences(No. 2021YT136), and the Innovation Project of Guangxi Graduate Education(No.YCSW2020193)

  • The hierarchically porous carbon materials were prepared with chitosan(CS) as carbon source, and NaCl, NaOH and Na2CO3 as activators. The morphology, porous structure, specific surface area and pore size distribution of the prepared carbon materials were characterized by scanning electron microscopy, X-ray diffraction, Raman spectrum and nitrogen adsorption-desorption isotherms,respectively. And the electrochemical properties of different carbon materials-modified electrode were studied by electrochemical techniques. Thus, structure-activity relationship between the morphology,structural and physicochemical parameters of different carbon materials and their electrochemical sensing properties were explored. The results showed that the hierarchically porous carbon material(CS-Na2CO3,prepared using Na2CO3 as activator) modified electrode had larger electrochemical active area, faster electron transfer rate and better electrocatalytic performance for three dihydroxybenzene isomers. A highperformance electrochemical sensing platform for simultaneous determination of hydroquinone, catechol and resorcinol was constructed based on the signal enhancement effect of CS-Na2CO3. The linear ranges for simultaneous determination of hydroquinone, catechol and resorcinol were 0.050-1.5 μmol/L,0.050-1.5 μmol/L and 0.50-15 μmol/L, and the detection limits (3σ) were calculated to be 0.012, 0.017 and 0.29 μmol/L, respectively. The prepared sensing platform demonstrated good accuracy in detection of dihydroxybenzene isomers in river water samples.
  • 加载中
    1. [1]

      WANG N Y, YANG Z J, YANG D H, ZHAO L, SHI X R, YANG G, HAN B H. ACS Appl. Mater. Interfaces, 2021, 13(7):8832-8843.

    2. [2]

      ZHONG R, ZHI C, WU Y, LIANG Z, TABASSUM H, ZHANG H, QIU T, GAO S, SHI J, ZOU R. Chin. Chem.Lett., 2020, 31(6):1588-1592.

    3. [3]

      WU X, LI H, YANG X, WANG X, MIAO Z, ZHOU P, ZHOU J, ZHUO S. Electrochim. Acta, 2021, 368:137610.

    4. [4]

      YI Y, WANG P, FAN G, WANG Z, CHEN S, XUE T, WEN Y. ACS Sustainable Chem. Eng., 2020, 8(26):9937-9946.

    5. [5]

      WU W, LIU Y, LIU D, CHEN W, SONG Z, WANG X, ZHENG Y, LU N, WANG C, MAO J, LI Y. Nano Res., 2021, 14(4):998-1003.

    6. [6]

      LIU Z, WANG L, YANG W. Chin. Chem. Lett., 2021, 32(9):2919-2922.

    7. [7]

      HUO S, ZHAO Y, ZOMG M, LIANG B, ZHANG X, KHAN I U, SONG X, LI K. J. Mater. Chem. A, 2020, 8(5):2505-2517.

    8. [8]

      DÍEZ N, FERRERO G A, SEVILLA M, FUERTES A B. J. Mater. Chem. A, 2019, 7(23):14280-14290.

    9. [9]

    10. [10]

      WEI L, HUANG X, ZHANG X, YANG X, YANG J, YAN F, YA Y. Anal. Methods, 2021, 13(9):1110-1120.

    11. [11]

    12. [12]

      RIAZ M A, YUAN Z, MAHMOOD A, LIU F, SUI X, CHEN J, HUANG Q, LIAO X, WEI L, CHEN Y. Sens.Actuators, B, 2020, 319:128243.

    13. [13]

      MENG S, MO Z, LI Z, GUO R, LIU N. Mater. Chem. Phys., 2020, 246:122830.

    14. [14]

      GUO N, LI M, SUN X, WANG F, YANG R. Green Chem., 2017, 19(11):2595-2602.

    15. [15]

      ZHU S, LI J J, HE C N, ZHAO N Q, LIU E Z, SHI C S, ZHANG M. J. Mater. Chem. A, 2015, 3(44):22266-22273.

    16. [16]

      WAN L, HU S Y, LIU J X, CHEN D Q, LIU S S, XIAO R, ZHANG Y, CHEN J, DU C, XIE M J. Ionics, 2020, 26:2549-2561.

    17. [17]

      SENTHIKUMAR S T, PARK S O, KIM J S, HWANG S M. J. Mater. Chem. A, 2017, 5(27):14174-14181.

    18. [18]

      SEVILLA M, FUERTES A B. J. Mater. Chem. A, 2013, 1(44):13738-13741.

    19. [19]

    20. [20]

      ZHANG S, CUI Y, WU B, SONG R, SONG H, ZHOU J, CHEN X, LIU J, CAO L. RSC Adv. 2014, 4(1):505-509.

    21. [21]

      QIAO Z, HWANG S, LI X, WANG C, SAMARAKOOND W, KARAKALOSE S, LI D, CHEN M, HE Y, WANG M, LIU Z, WANG G, ZHOU H, FENG Z, SU D, SPENDELOW J S, WU G. Energy Environ. Sci., 2019, 12(9):2830-2841.

    22. [22]

      SHAO D, WANG C, WANG L, GUO X, GUO J, ZHANG S, LU Y. J. Alloys Compd., 2021, 863:158682.

    23. [23]

      LI H, LV N, LI X, LIU B, FENG J, REN X, GUO T, CHEN D, STODDART J F, GREF R, ZHANG J. Nanoscale, 2017, 9(22):7454-7462.

    24. [24]

      XIAO X, LI X, WANG Z, YAN G, GUO H, HU Q, LI L, LIU Y, WANG J. Appl. Catal., B, 2020, 265:118603.

    25. [25]

      RANDLES J E B. Trans. Faraday Soc., 1948, 44:322-327.

    26. [26]

      SEVCIK A. Collect. Czech. Chem. Commun., 1948, 13:349-377.

    27. [27]

      YANG S, YANG M, YAO X, FA H, WANG Y, HOU C, Sens. Actuators, B, 2020, 320:128294.

    28. [28]

      ANU PRATHAP M U, SATPATI B, SRIVASTAVA R. Sens. Actuators, B, 2013, 186:67-77.

    29. [29]

      ZHANG C J, HAN M M, YU L L, QU L B, LI Z H. J. Electroanal. Chem., 2021, 890:115232.

    30. [30]

      ATTA N F, GALAL A, EL-GOHARY A R M. J. Hazard. Mater., 2020, 388:122038.

    31. [31]

      HUANG L L, CAO Y Y, DIAO D F. Sens. Actuators, B, 2020, 305:127495.

    32. [32]

      DENG M, LIN S R, BO X J, GUO L P. Talanta, 2017, 174:527-538.

    33. [33]

      ZHANG T T, GUO H, YANG M, SUN L, ZHANG J Y, WANG M Y, YANG F, WU N, YANG W. Microchem. J., 2022, 175:107139.

    34. [34]

      YIN D D, LIU J, BO X J, GUO L P. Anal. Chim. Acta, 2020, 1093:35-42.

  • 加载中
    1. [1]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    3. [3]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    4. [4]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    5. [5]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    8. [8]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    19. [19]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(9)
  • Abstract views(962)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return