Citation: YAN Shuai,  LI Yong-Yu,  PENG Yan-Kun,  MA Shao-Jin,  WANG Wei. Rapid Detection of Quinolone Antibiotics Residues in Chicken Eggs by Surface-enhanced Raman Spectroscopy Combined with Chemometrics[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1578-1586. doi: 10.19756/j.issn.0253-3820.221042 shu

Rapid Detection of Quinolone Antibiotics Residues in Chicken Eggs by Surface-enhanced Raman Spectroscopy Combined with Chemometrics

  • Corresponding author: LI Yong-Yu, yyli@cau.edu.cn
  • Received Date: 20 January 2022
    Revised Date: 25 July 2022

    Fund Project: Supported by the National Key Research and Development Project of China (No.2016YFD0101205).

  • The issue of antibiotic abuse and residues has attracted more and more attention. Combined with surface-enhanced Raman spectroscopy (SERS), QuEChERS (Quick, easy, cheap, effective, rugged, rafe) rapid sample preparation and chemometric methods, a simple, sensitive and rapid method was established to detect quinolone antibiotic residues in chicken eggs. The effectiveness of 0.2% formic acid-acetonitrile solution for extracting quinolone antibiotic residues in egg white was determined, and the detection limit of enrofloxacin was 0.1783 mg/kg. Univariate regression models based on Raman characteristic peaks and a partial least squares regression (PLSR) model based on full spectrum were established, and the effectiveness and performance of competitive adaptive weighted sampling, random frog, and successive projections algorithms for enrofloxacin SERS characteristic spectral variable screening were studied. The PLSR model established by 11 variables selected by random frog algorithm obtained the lowest root mean square error of cross validation set (RMSECV=0.1346 mg/kg) and root mean square error of prediction set (RMSEP=0.1380 mg/kg), indicating that the multispectral variables were closely related to enrofloxacin concentration in eggs. The results showed that SERS technique based on rapid sample pretreatment and chemometrics could achieve rapid quantitative prediction of quinolone antibiotic residues in eggs, so as to monitor the quality and safety of eggs.
  • 加载中
    1. [1]

      BUTAYE P, DEVRIESE L A, HAESEBROUCK F. Clin. Microbiol. Rev., 2003, 16(2):175-188.

    2. [2]

      KVMMERER K. Chemosphere, 2009, 75(4):417-434.

    3. [3]

      HEEB S, FLETCHER M P, CHHABRA S R, DIGGLE S P, WILLIAMS P, CÁMARA M. FEMS Microbiol. Rev., 2011, 35(2):247-274.

    4. [4]

      CUONG N V, PADUNGTOD P, THWAITES G, CARRIQUE-MAS J. Antibiotics, 2018, 7(3):75.

    5. [5]

      GOETTING V, LEE K A, TELL L A. J. Vet. Pharmacol. Ther., 2011, 34(6):521-556.

    6. [6]

      FÁBREGA A, SÁNCHEZ-CÉSPEDES J, SOTO S, VILA J. Int. J. Antimicrob. Agents, 2008, 31(4):307-315.

    7. [7]

      YANG Y, QIU W, LI Y, LIU L. Food Addit. Contam., Part B, 2020, 13(3):177-184.

    8. [8]

      PRESTINACI F, PEZZOTTI P, PANTOSTI A. Pathog. Global Health, 2015, 109(7):309-318.

    9. [9]

      ZHAO Y, YANG Q E, ZHOU X, WANG F, MUURINEN J, VIRTA M P, BRANDT K K, ZHU Y. Crit. Rev. Environ. Sci. Technol., 2021, 51(19):2159-2196.

    10. [10]

      HASHIGUCHI T C O, OUAKRIM D A, PADGET M, CASSINI A, CECCHINI M. Eurosurveillance, 2019, 24(20):1800445.

    11. [11]

      EUROPEAN U. Official Journal of the European Communities, 2009.

    12. [12]

    13. [13]

      ANNUNZIATA L, VISCIANO P, STRAMENGA A, COLAGRANDE M N, CAMPANA G, SCORTICHINI G, MIGLIORATI G, COMPAGNONE D. Food Anal. Methods, 2016, 9(8):2308-2320.

    14. [14]

      HUET A, CHARLIER C, TITTLEMIER S A, SINGH G, BENREJEB S, DELAHAUT P. J. Agric. Food Chem., 2006, 54(8):2822-2827.

    15. [15]

      SHENG W, LI Y, XU X, YUAN M, WANG S. Microchim. Acta, 2011, 173(3-4):307-316.

    16. [16]

      FIERENS C, HILLAERT S, VAN DEN BOSSCHE W. J. Pharm. Biomed. Anal., 2000, 22(5):763-772.

    17. [17]

      KANG J, FAN C L, CHANG Q Y, BU M N, ZHAO Z Y, WANG W, PANG G F. Anal. Methods, 2014, 6(16):6285-6293.

    18. [18]

      JOHN N, GEORGE S. Raman Spectrom. Elsevier, 2017:95-127.

    19. [19]

      LIU Y, REN X, YU H, CHENG Y, GUO Y, YAO W, XIE Y. Food Control, 2020, 118:107426.

    20. [20]

      GALLI R, PREUSSE G, UCKERMANN O, BARTELS T, KRAUTWALD-JUNGHANNS M, KOCH E, STEINER G. Anal. Chem., 2016, 88(17):8657-8663.

    21. [21]

      JOSHI R, LOHUMI S, JOSHI R, KIM M S, QIN J, BAEK I, CHO B. Sens. Actuators, B, 2020, 303:127243.

    22. [22]

      PÉREZ-JIMÉNEZ A I, LYU D, LU Z, LIU G, REN B. Chem. Sci., 2020, 11(18):4563-4577.

    23. [23]

      YUAN A, WU X, LI X, HAO C, XU C, KUANG H. Small, 2019, 15(27):1901958.

    24. [24]

      LI H, YUE X, GAO N, TANG J, LV X, HOU J. Anal. Bioanal. Chem., 2020, 412(13):3063-3071.

    25. [25]

      LAI H L, GHOSH S, CHATTOPADHYAY S. Analyst, 2021, 146(11):3557-3567.

    26. [26]

      GIRMATSION M, MAHMUD A, ABRAHA B, XIE Y, CHENG Y, YU H, YAO W, GUO Y, QIAN H. Food Control, 2021, 126:108019.

    27. [27]

      JIANG L, HASSAN M M, ALI S, LI H, SHENG R, CHEN Q. Trends Food Sci. Technol., 2021, 112:225-240.

    28. [28]

    29. [29]

    30. [30]

      ZHANG C, DENG Y, ZHENG J, ZHANG Y, YANG L, LIAO C, SU L, ZHOU Y, GONG D, CHEN L, LUO A. TrAC, Trends Anal. Chem., 2019, 118:517-537.

    31. [31]

      ZHU J, AGYEKUM A A, KUTSANEDZIE F Y H, LI H, CHEN Q, OUYANG Q, JIANG H. LWT-Food Sci. Technol., 2018, 97:760-769.

    32. [32]

      GOODACRE R, GRAHAM D, FAULDS K. TrAC, Trends Anal. Chem., 2018, 102:359-368.

    33. [33]

    34. [34]

      LEE P C, MEISEL D. J. Phys. Chem., 1982, 86(17):3391-3395.

    35. [35]

      EILERS P H C, BOELENSH F M. Life Sci., 2005:1-26.

    36. [36]

      ZHANG Y, HUANG Y, ZHAI F, DU R, LIU Y, LAI K. Food Chem., 2012, 135(2):845-850.

    37. [37]

      MOL H G J, PLAZA-BOLAÑOS P, ZOMER P, DE RIJK T C, STOLKER A A M, MULDERP P J. Anal. Chem., 2008, 80(24):9450-9459.

    38. [38]

      DASENAKI M E, THOMAIDIS N S. Anal. Chim. Acta, 2010, 672(1-2):93-102.

    39. [39]

      EL BADAWY A M, LUXTON T P, SILVA R G, SCHECKEL K G, SUIDAN M T, TOLAYMAT T M. Environ. Sci. Technol., 2010, 44(4):1260-1266.

    40. [40]

      DUBEY S P, LAHTINEN M, SILLANPÄÄ M. Proc. Biochem., 2010, 45(7):1065-1071.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    10. [10]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    11. [11]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    14. [14]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    16. [16]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    20. [20]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

Metrics
  • PDF Downloads(10)
  • Abstract views(518)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return