Citation: XU Yu-Hao,  WEI Sheng-Nan,  WANG Yue-Kun,  XIONG Chen-Yu,  XIE Yong,  HAN Ming-Jie,  WANG Ri,  BIAN Chao,  XIA Shan-Hong. Electrochemical Sensor Based on Boron-Doped Diamond Electrode for Determination of Phosphate[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 889-898. doi: 10.19756/j.issn.0253-3820.221039 shu

Electrochemical Sensor Based on Boron-Doped Diamond Electrode for Determination of Phosphate

  • Corresponding author: BIAN Chao,  XIA Shan-Hong, 
  • Received Date: 20 January 2022
    Revised Date: 2 April 2022

    Fund Project: Supported by the National Key Research and Development Program of China(No. 2020YFB2009003).

  • Phosphorus is an important indicator in surface water quality standards. Excessive phosphate can lead to eutrophication, so it is necessary to develop an accurate and sensitive method for detection of phosphate in water. In this work, an electrochemical sensor based on boron-doped diamond electrode was developed to achieve sensitive detection of phosphate in water through electrochemical reduction of phosphomolybdate. The sensor achieved excellent performances in detection of phosphate, including wide detection range, high sensitivities(0.301 nA·L/μmol in the range of 0.4-5.0 μmol/L, and 97 nA·L/μmol in the range of 5.0-80.0 μmol/L), and low limit of detection(0.1 μmol/L). Meanwhile, the electrochemical sensor showed good anti-interference ability for phosphate detection, and the recoveries of phosphate in tap and lake water sample were 93.8%-104.5%. Compared with standard spectrophotometry, the electrochemical detection process was environmentally friendly with less usage of reagents. The sensor displayed excellent catalytic properties for detection of phosphate without electrode modification, and had potential for long-term online monitoring of phosphate.
  • 加载中
    1. [1]

      SMITH V H. Environ. Sci. Pollut. Res., 2003, 10(2):126-139.

    2. [2]

      TIESSEN H. Phosphorus in the Global Environment, 2008:1-7.

    3. [3]

    4. [4]

      RUIZ-CALERO V, GALCERAN M T. Talanta, 2005, 66(2):376-410.

    5. [5]

      KROECKEL L, LEHMANN H, WIEDUWILT T, SCHMIDT M A. Talanta, 2014, 125:107-113.

    6. [6]

      LIU W, DU Z, QIAN Y, LI F. Sens. Actuators, B, 2013, 176:927-931.

    7. [7]

      UDNAN Y, MCKELVIE I D, GRACE M R, JAKMUNEE J, GRUDPAN K. Talanta, 2005, 66(2):461-466.

    8. [8]

    9. [9]

      MURPHY J, RILEY J P. Anal. Chim. Acta, 1962, 26(1):31.

    10. [10]

      LI Y, JIANG T, YU X, YANG H. J. Electrochem. Soc., 2016, 163(9):B479-B484.

    11. [11]

      KARGOSHA K, HEMMATKHAH P, AHMADI S H. Anal. Bioanal. Electrochem., 2017, 9(5):521-534.

    12. [12]

      KOLLIOPOULOS A V, KAMPOURIS D K, BANKS C E. Anal. Chem., 2015, 87(8):4269-4274.

    13. [13]

      TALARICO D, ARDUINI F, AMINE A, MOSCONE D, PALLESCHI G. Talanta, 2015, 141:267-272.

    14. [14]

      CINTI S, TALARICO D, PALLESCHI G, MOSCONE D, ARDUINI F. Anal. Chim. Acta, 2016, 919:78-84.

    15. [15]

      KABIR M, RAHMAN M, GURUNG A, QIAO Q. IEEE Sens. J., 2018, 18(9):3480-3485.

    16. [16]

      MATSUNAGA K, KUDO I, YANADA M, HASEBE K. Anal. Chim. Acta, 1986, 185:355-358.

    17. [17]

      BERCHMANS S, KARTHIKEYAN R, GUPTA S, POINERN G E J, ISSA T B, SINGH P. Sens. Actuators, B, 2011, 160(1):1224-1231.

    18. [18]

      JONCA J, LEON FERNANDEZ V, THOURON D, PAULMIER A, GRACO M, GARCON V. Talanta, 2011, 87:161-167.

    19. [19]

      BAI Y, TONG J, WANG J, BIAN C, XIA S. IET Nanobiotechnol., 2014, 8(1):31-36.

    20. [20]

      SATOH H, MIYAZAKI Y, TANIUCHI S, OSHIKI M, RATHNAYAKE R M L D, TAKAHASHI M, OKABE S.Anal. Sci., 2017, 33(7):825-830.

    21. [21]

      TOPCU C, CAGLAR B, ONDER A, COLDUR F, CAGLAR S, GUNER E, CUBUK O, TABAK A. Mater. Res.Bull., 2018, 98:288-299.

    22. [22]

      OGABIELA E, ADELOJU S B, CUI J, WU Y, CHEN W. Biosens. Bioelectron., 2015, 71:278-285.

    23. [23]

      HE B, LIU H. Sens. Actuators, B, 2020, 304:127303.

    24. [24]

      LUONG J H T, MALE K B, GLENNON J D. Analyst, 2009, 134:1965-1979.

    25. [25]

      PEREIRA G F, ANDRADE L S, ROCHA-FILHO R C, BOCCHI N, BIAGGIO S R. Electrochim. Acta, 2012, 82:3-8.

    26. [26]

      BROCENSCHI R F, SILVA T A, LOURENCAO B C, FATIBELLO-FILHO O, ROCHA-FILHO R C. Electrochim.Acta, 2017, 243:374-381.

    27. [27]

      SCREMIN J, SARTORI E R. Can. J. Chem., 2018, 96(1):1-7.

    28. [28]

      HONORIO G G, AZEVEDO G C, COSTA MATOS M A, DE OLIVEIRA M A L, MATOS R C. Food Control, 2014, 36(1):42-48.

    29. [29]

      GUO Y, HUANG N, YANG B, WANG C, ZHUANG H, TIAN Q, ZHAI Z, LIU L, JIANG X. Sens. Actuators, B, 2016, 231:194-202.

    30. [30]

      MCLAUGHLIN M H S, PAKPOUR-TABRIZI A C, JACKMAN R B. Electroanalysis, 2019, 31(9):1775-1782.

    31. [31]

      ASAI K, IVANDINI T A, FALAH M M, EINAGA Y. Electroanalysis, 2016, 28(1):177-182.

    32. [32]

      PRAYIKAPUTRI P U, GUNLAZUARDI J, IVANDINI T A. International Symposium on Current Progress in Functional Materialsed. Bali, INDONESIA 2016.

    33. [33]

      YANG Z, LI M, LI H, LI H, LI C, YANG B. Anal. Chim. Acta, 2020, 1135:73-82.

    34. [34]

    35. [35]

      WARWICK C, GUERREIRO A, SOARES A. Biosens. Bioelectron., 2013, 41:1-11.

    36. [36]

      LU G, WU X, LAN Y, YAO S. Talanta, 1999, 49(3):511-515.

    37. [37]

      TORREZANI L, SACZK A A, DE OLIVEIRA M F, STRADIOTTO N R, OKUMURA L L. Electroanalysis, 2011, 23(10):2456-2461.

    38. [38]

      TALARICO D, CINTI S, ARDUINI F, AMINE A, MOSCONE D, PALLESCHI G. Environ. Sci. Technol., 2015, 49(13):7934-7939.

    39. [39]

      ARVAS M B, GURSU H, GENCTEN M, SAHIN Y. Anal. Methods, 2018, 10(35):4282-4291.

    40. [40]

      QUINTANA J C, IDRISSI L, PALLESCHI G, ALBERTANO P, AMINE A, EL RHAZI M, MOSCONE D. Talanta, 2004, 63(3):567-574.

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    18. [18]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

Metrics
  • PDF Downloads(15)
  • Abstract views(1104)
  • HTML views(263)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return