Citation: MA Ru-long,  HAO Qian,  LIANG Meng-jia,  YU Yan-kai,  NIU Na,  CHEN Li-gang. Preparation of MoS2-modified Straw Carbon Dots Nanozyme for Detection of Uric Acid Content in Human Urine[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 545-553. doi: 10.19756/j.issn.0253-3820.221035 shu

Preparation of MoS2-modified Straw Carbon Dots Nanozyme for Detection of Uric Acid Content in Human Urine

  • Corresponding author: NIU Na,  CHEN Li-gang, 
  • Received Date: 19 January 2022
    Revised Date: 28 February 2022

    Fund Project: the Natural Science Foundation of Heilongjiang Province,China(No. B2008001)Supported by the National Natural Science Foundation of China(No. 21401019)the Provincial College Students’ Innovation Training Program of Northeast Forestry University(No. 202110225341)

  • The MoS2-modified straw carbon dots nanozyme(Mo, S-CDs) was prepared by hydrothermal synthesis for detection of content of uric acid in human urine. This work fully exploited the inherent advantages of straw structure and realized the recycling of biomass waste. The characterization of Mo, S-CDs showed that Mo and S elements were successfully modified into the structure of straw carbon dots, and the Mo, S-CDs were spherical with abundant functional groups on the surface to ensure their good dispersion in aqueous medium and amorphous carbon structure at crystal level. The Mo, S-CDs had the activity of mimetic peroxidase and showed high catalytic efficiency. They were able to rapidly catalyze the oxidation of 3, 3', 5, 5'-tetramethylbenzidine in a system containing H2O2 to generate chromogenic product, which visually showed a characteristic blue color signal in response and reached a peak absorbance at 652 nm.The cascade catalytic sensing system of uric acid-Mo, S-CDs was constructed based on the sensing ability of Mo, S-CDs for H2O2 generation catalyzed by uric acid, which was applied to the detection of uric acid in human urine. The sensing system had good linear range(5-100 μmol/L), low detection limit(1.8 μmol/L), satisfied recovery(96.8%-106.1%) and good relative standard deviation(less than 5%) in detection of uric acid. The results showed that Mo, S-CDs had advantages over natural peroxidases in terms of wide applicable temperature range and high stability, which would make them more widely useful in fields such as life analysis.
  • 加载中
    1. [1]

      AGNOLETTI D, CICERO A F G, BORGHI C. Cardiol. Clin., 2021, 39(3):365-376.

    2. [2]

      HAN M, KIM H, KIM H J, KANG E, KIM Y S, CHOIK H, KIM S W, AHN C, OH K H. BMC Nephrol., 2021,22(1):247.

    3. [3]

    4. [4]

      JEN J F, HSIAO S L, LIU K H. Talanta, 2002, 58(4):711-717.

    5. [5]

    6. [6]

    7. [7]

    8. [8]

      ZHAO J J, ZHAO L M, LAN C Q, ZHAO S L. Sens. Actuators, B, 2016, 223:246-251.

    9. [9]

      WU C Y, ZHU L J, LU Q J, LI H T, ZHANG Y Y, YAO S Z. Microchim. Acta, 2019, 186(12):754-761.

    10. [10]

      BADOEI-DALFARD A, SOHRABI N, KARAMI Z, SARGAZI G. Biosens. Bioelectron., 2019, 141:111420.

    11. [11]

    12. [12]

      SUN Y, CHEN J, QI H, SHI Y. J. Chromatogr. B, 2015, 1004:53-59.

    13. [13]

      LIU H, GU C, HOU C, YIN Z, FAN K, ZHANG M. Sens. Actuators, B, 2016, 224:857-862.

    14. [14]

      FANG A, WU Q, LU Q, CHEN H, LI H, LIU M, ZHANG Y, YAO S. Biosens. Bioelectron., 2016, 86:664-670.

    15. [15]

      PAN Y D, YANG Y F, PANG Y J, SHI Y, LONG Y J, ZHENG H Z. Talanta, 2018, 185:433-438.

    16. [16]

      SUN H J, ZHOU Y, REN J S, QU X G. Angew. Chem., Int. Ed., 2018, 57(30):9224-9237.

    17. [17]

      GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S,YAN X Y. Nat. Nanotechnol., 2007, 2(9):577-583.

    18. [18]

      DING H, HU B, ZHANG B, ZHANG H, YAN X Y, NIE G H, LIANG M M. Nano Res., 2021, 14:570-583.

    19. [19]

    20. [20]

    21. [21]

      DEVI P, SAINI S, KIM K H. Biosens. Bioelectron., 2019, 141:111158.

    22. [22]

      TAN J Y, LI Y, TAN X, WU H G, LI H, YANG S. Front. Chem., 2021, 9:696030.

    23. [23]

      LI F, HE T S, WU S H, PENG Z J, QIU P, TANG X M. Microchem. J., 2021, 164:105987.

    24. [24]

      DING H, WEI J S, ZHANG P, ZHOU Z Y, GAO Q Y, XIONG H M. Small, 2018, 14(22):1800612.

    25. [25]

      WANG X J, WU Q, JIANG K L, WANG C X, ZHANG C. Sens. Actuators, B, 2017, 252:183-190.

    26. [26]

      BANO D, KUMAR V, SINGH V K, HASAN S H. New J. Chem., 2018, 42(8):5814-5821.

    27. [27]

      ZHAO Y H, HUANG Y, WU J L, ZHAN X I, XIE Y Y, TANG D Y, CAO H Y, YUN Y. RSC Adv., 2018, 8(13):7252-7259.

    28. [28]

      JIANG B, DUAN D M, GAO L Z, ZHOU M J, FAN K L, TANG Y, XI J Q, BI Y H, TONG Z, GAO G F, XIE N,TANG A F, NIE G H, LIANG M M, YAN X Y. Nat. Protoc., 2018, 13(7):1506-1520.

    29. [29]

      HUANG Z, HE W T, SHEN H, HAN G J, WANG H, SU P, SONG J Y, YANG Y. Talanta, 2021, 230:122337.

    30. [30]

      CHEN Q, LIU M L, ZHAO J N, PENG X, CHEN X J, MI N X, YIN B D, LI H T, ZHANG Y Y, YAO S Z. Chem.Commun., 2014, 50:6771-6774.

    31. [31]

      LIN L P, SONG X H, CHEN Y Y, RONG M C, ZHAO T T, WANG Y R, JIANG Y Q, CHEN X. Anal. Chim. Acta,2015, 869:89-95.

    32. [32]

      DING C P, YAN Y H, XIANG D S, ZHANG C L, XIAN Y Z. Microchim. Acta, 2016, 183:625-631.

    33. [33]

      JIN L H, MENG Z, ZHANG Y Q, CAI S J, ZHANG Z H, LI C, SHANG L, SHEN Y H. ACS Appl. Mater.Interfaces, 2017, 9(11):10027–10033.

    34. [34]

      NIRALA N R, VINITA, PRAKASH R. Microchim. Acta, 2018, 185(4):224.

    35. [35]

      SUN H J, ZHAO A D, GAO N, LI K, REN J S, QU X G. Angew. Chem., Int. Ed., 2015, 54(24):7176-7180.

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    6. [6]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    11. [11]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

Metrics
  • PDF Downloads(12)
  • Abstract views(919)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return