Citation: QU Min-Min,  CHEN Jia,  XU Bin,  LI Zhi,  GUO Lei,  XU Hua,  XIE Jian-Wei. Determination of Genotoxic Compounds with Different Modes of Action on Histone H3 Acetylation by Protein Modification Quantitative Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 940-947. doi: 10.19756/j.issn.0253-3820.221025 shu

Determination of Genotoxic Compounds with Different Modes of Action on Histone H3 Acetylation by Protein Modification Quantitative Mass Spectrometry

  • Corresponding author: XU Hua, huarxu@163.com
  • Received Date: 14 January 2022
    Revised Date: 31 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 21974151).

  • Three target peptides, H3K9ac, H3K14ac and H3, in human cell lines were determined by highperformance liquid chromatography coupled with triple quadrupole mass spectrometry under positive ion multiple reaction monitoring mode(MRM). The cell samples were pre-treated by trypsin digestion,propionylation derivatization, desalination, peptide enrichment, and then separated by ACQUITY UPLC BEH C18 column. The results indicated that the three peptides in cells had good linear relationship within the concentration range of 1-250 ng/mL(R2>0.99). The detection limits(S/N=3) of the peptides were 0.1 ng/mL.Accuracy, precision, matrix effects and recoveries meet the methodological requirement for biological samples analysis. The established method had many advantages such as simple operation, high sensitivity,fast detection and accurate quantification, which had been initially applied to evaluate the effects of two classic genotoxic compounds(camptothecin and colchicine) with different modes of action on the acetylation at position 9 and position 14 of histone H3 in cells. This method provided important technical support for DNA damage/repair and transcription research of genotoxic compounds.
  • 加载中
    1. [1]

      PHILLIPS D H, ARLT V M. EXS, 2009, 99:87-110.

    2. [2]

      SZEKELY G, AMORES D, GIL M, FERREIRA F C, HEGGIE W. Chem. Rev., 2015, 115(16):8182-8229.

    3. [3]

    4. [4]

      MISHIMA M. Front. Biosci., 2017, 9(1):1-16.

    5. [5]

      MOTOYAMA S, TAKEIRI A, TANAKA K, HARADA A, MATSUZAKI K, TAKETO J, MATSUO S, FUJII E, MISHIMA M. Genes Environ., 2018, 40:10.

    6. [6]

      KOUZARIDES T. Cell, 2007, 128(4):693-705.

    7. [7]

      SHIN D M, KUCIA M, RATAJCZAK M Z. Gerontology, 2011, 57(1):76-84.

    8. [8]

      PETERSON C L, LANIEL M A. Curr. Biol., 2004, 14(14):R546-R551.

    9. [9]

      KIMURA H. J. Hum. Genet., 2013, 58(7):439-445.

    10. [10]

      GRUNSTEIN M. Nature, 1997, 389(6649):349-352.

    11. [11]

      WANG Z, ZANG C, ROSENFELD J A, SCHONES D E, BARSKI A, CUDDAPAH S, CUI K, ROH T Y, PENG W, ZHANG M Q. Nat. Genet., 2008, 40(7):897-903.

    12. [12]

      FUCHS S M, KRAJEWSKI K, BAKER R W, MILLER V L, STRAHL B D. Curr. Biol., 2011, 21(1):53-58.

    13. [13]

      SAWAN C, HERCEG Z. Adv. Genet., 2010, (70):57-85.

    14. [14]

      FISCHLE W, WANG Y, ALLIS C D. Curr. Opin.Cell Biol., 2003, 15(2):172-183.

    15. [15]

      ZHANG C, MOLASCON A J, GAO S, LIU Y, ANDREWS P C. Mol. Cell Proteomics, 2013, 12(6):1678-1688.

    16. [16]

      QU M M, XU H, CHEN J, ZHANG Y J, XU B, GUO L, XIE J W. Chem. Res. Toxicol., 2020, 33(8):2108-2119.

    17. [17]

      QU M M, XU H, LI W J, CHEN J, ZHANG Y J, XU B, LI Z, LIU T, GUO L, XIE J W. Arch. Toxicol., 2021, 95(11):3559-3573.

    18. [18]

    19. [19]

      LIN S, GARCIA B A. Methods Enzymol., 2012, 512(3):3-28.

    20. [20]

      GARCIA B A, MOLLAH S, UEBERHEIDE B M, BUSBY S A, MURATORE T L, SHABANOWITZ J, HUNT D F.Nat. Protoc., 2007, 2(4):933-938.

    21. [21]

      US Food and Drug Administration, Center for Drug Evaluation and Research Center for Veterinary Medicine.Guidance for Industry Bioanalytical Method Validation[EB/OL]. www. fad. gov/cvm. 2019.

    22. [22]

      VEMPATI R K, HALDAR D. Mol. Biol. Rep., 2012, 39(1):303-308.

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    15. [15]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    16. [16]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(11)
  • Abstract views(981)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return