Citation: ZHANG Yu-Yu,  HUANG Ya-Yue,  ZENG Hui,  YANG Tao,  LUO Xi-Liang. Electrochemical Sensing Interface Based on Synergistic Antifouling of Polyethylene Glycol and Chondroitin Sulfate for Sensitive Detection of tlh Gene Segment of Vibrio Parahaemolyticus[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1041-1047. doi: 10.19756/j.issn.0253-3820.221021 shu

Electrochemical Sensing Interface Based on Synergistic Antifouling of Polyethylene Glycol and Chondroitin Sulfate for Sensitive Detection of tlh Gene Segment of Vibrio Parahaemolyticus

  • Corresponding author: YANG Tao,  LUO Xi-Liang, 
  • Received Date: 12 January 2022
    Revised Date: 29 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21675092), the Special Project on the Integration of Industry, Education and Research of Guangzhou (No.201604016008) and the Foshan Nanhai Economic and Technological Promotion Bureau Project (No.20177611071010008).

  • Foodborne pathogens are the main cause of seafood poisoning in the world, and the traditional electrochemical detection methods have always suffered from nonspecific adsorption and serious biological fouling in the practical complex samples. Therefore, it is urgent to develop antifouling and sensitive biosensor platforms for detecting foodborne pathogens in complex matrix. In this study, by integrating polyethylene glycol (PEG) with good hydrophilicity and chondroitin sulfate (CS) with excellent biocompatibility, an electrochemical DNA sensing interface for detection of the tlh gene segment of Vibrio parahaemolyticus based on synergistic antifouling of PEG and CS was constructed. Compared with sole poly(m-aminobenzoic acid) modified glassy carbon electrode (PABA/GCE), PEG/PABA/GCE and CS/PABA/GCE, CS/PEG/PABA/GCE exhibited many advantages such as excellent anti-protein (single protein and complex skim milk) adsorption performance and stability. Moreover, the sensing interface showed high sensitivity and satisfactory selectivity to the tlh gene segment in the range of 1.0×10-20-1.0×10-8 mol/L with a detection limit of 3.3×10-21 mol/L.
  • 加载中
    1. [1]

      XUE L, ZHENG L, ZHANG H L, JIN X, LIN J H. Sens. Actuators, B, 2018, 265:318-325.

    2. [2]

      ZHU P, GAO W F, HUANG H L, JIANG J P, CHEN X F, FAN J Z, YAN X J. Food Anal. Method, 2018, 11:2076-2084.

    3. [3]

      NIGRO O D, STEWARD G F. J. Microbiol. Methods, 2015, 111:24-30.

    4. [4]

      BAYAT M, KHABIRI A, HEMATI B. Can. J. Infect. Dis. Med. Microbiol., 2019, 2019:4164982.

    5. [5]

      TABATABAEI M S, ISLAM R, AHMED M. Anal. Chim. Acta, 2021, 1143:250-266.

    6. [6]

      LI Y, LIU H M, HUANG H, DENG J, FANG L C, LUO J, ZHANG S, HUANG J, LIANG W B, ZHENG J S. Biosens. Bioelectron., 2020, 147:111752.

    7. [7]

    8. [8]

      QIU Q M, CHEN H Y, YING S N, SHARIF S, YOU Z H, WANG Y X, YING Y B. Microchim. Acta, 2019, 186(2):93.

    9. [9]

      WANG M, ZENG J, WANG J Q, WANG X, WANG Y, GAN N. Microchim. Acta, 2021, 188(8):244.

    10. [10]

    11. [11]

      ZHANG Z G, ZHOU J, DU X. Micromachines, 2019, 10(4):222.

    12. [12]

      LIN P H, LI B R. Analyst, 2020, 145(4):1110-1120.

    13. [13]

      CUI M, SONG Z, WU Y, GUO B, FAN X, LUO X L. Biosens. Bioelectron., 2016, 79:736-741.

    14. [14]

      HUI N, SUN X, SONG Z, NIU S, LUO X L. Biosens. Bioelectron., 2016, 86:143-149.

    15. [15]

      CUI M, WANG Y, JIAO M, JAYACHANDRAN S, WU Y, FAN X, LUO X L. ACS Sens., 2017, 2(4):490-494.

    16. [16]

      WANG G, HAN R, SU X, LI Y, XU G, LUO X L. Biosens. Bioelectron., 2017, 92:396-401.

    17. [17]

      XU Z Y, HAN R, LIU N Z, GAO F X, LUO X L. Sens. Actuators, B, 2020, 319:128253.

    18. [18]

      XIA Y Q, ADIBNIA V, SHAN C C, HUANG R L, QI W, HE Z M, XIE G J, OLSZEWSKI M, DE CRESCENZO G, MATYJASZEWSKI K, BANQUY X, SU R X. Langmuir, 2019, 35(48):15535-15542.

    19. [19]

      YE H J, HAN M Y, HUANG R L, SCHMIDT T A, QI W, HE Z M, MARTIN L L, JAY G D, SU R X, GREENE G W. ACS Appl. Mater. Interfaces, 2019, 11(20):18090-18102.

    20. [20]

      CHEN L H, LV S L, LIU M C, CHEN C F, SHENG J L, LUO X L. ACS Appl. Nano Mater., 2018, 1(6):2489-2495.

    21. [21]

      ZHAO S Y, ZHOU Y X, WEI L, CHEN L H. Anal. Chim. Acta, 2020, 1126:91-99.

    22. [22]

      YANG T, CHEN H Y, QIU Z W, YU R Z, LUO S Z, LI W H, JIAO K. ACS Appl. Mater. Interfaces, 2018, 10(5):4540-4547.

    23. [23]

      ZHU W C, HUANG H, GAO X C, MA H Y. Mater. Sci. Eng. C, 2014, 45:21-28.

    24. [24]

      WANG S, MA Y H, WANG Y, JIAO M X, LUO X L, CUI M. Colloids Surf., B, 2020, 186:110706.

    25. [25]

      LIU N Z, SONG J Y, LU Y W, DAVIS J J, GAO F X, LUO X L. Anal. Chem., 2019, 91(13):8334-8340.

    26. [26]

      HUI N, SUN X T, NIU S Y, LUO X L. ACS Appl. Mater. Interfaces, 2017, 9(3):2914-2923.

    27. [27]

      FIGUERO-MIRANDA G, WU C T, ZHANG Y T, NOERBEL L, LO Y, TANNER J A, ELLING L, OFFENHAUSSER A, MAYER D. Bioelectrochemistry, 2020, 136:107589.

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    8. [8]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    18. [18]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(6)
  • Abstract views(749)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return