Citation: LI Shan,  CHEN Zhen,  LIU Chang-Jie,  JIN Jiao,  WANG Han,  HU Jun,  MA He,  SHI Jia-Liang,  REN Qian,  CHENG Yu-Peng,  LIU You-Jiang,  CHEN Chi-Lai. Rapid Detection of Hydrogen Sulfide Gas at Ambient Humidity Based on Nafion-High-Field Asymmetric Waveform Ion Mobility Spectrometry Technology[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 924-931. doi: 10.19756/j.issn.0253-3820.221019 shu

Rapid Detection of Hydrogen Sulfide Gas at Ambient Humidity Based on Nafion-High-Field Asymmetric Waveform Ion Mobility Spectrometry Technology

  • Corresponding author: LIU You-Jiang,  CHEN Chi-Lai, 
  • Received Date: 12 January 2022
    Revised Date: 21 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 61871367, 41805017), the Youth Innovation Promotion Association of Chinese Academy of Sciences(No. 2013213), the Fundamental Research Funds for the Central Universities(No. WK5290000002), and the Chinese Academy of Sciences Hefei Institute of Material Science Double Innovation Fund(No. KY-2021-SC-05).

  • High-field asymmetric waveform ion mobility spectrometry(FAIMS) is a fast and sensitive field detection technology, but the detection of polar substances using FAIMS is easily affected by humidity. Based on that nafion tube could selectively and quickly filter water gas, a nafion-FAIMS technology was proposed for rapid detection of environmental hydrogen sulfide(H2S) gas under ambient humidity in this work. The self-made nafion-FAIMS device was used to study the stability of nafionFAIMS in detection of H2S under different humidity conditions, the separation and identification ability of H2S in the presence of typical environmental interferents, the linearity and the detection limit. The results showed that when the relative humidity was 5%-50%, the relative standard deviations(RSDs) of peak position and peak height of H2S spectrum were less than 0.4% and 0.2%, respectively, which were 10 times and 250 times smaller than that of single FAIMS, showing high recognition and quantitative stability. When the dispersion voltage was 1200 V, the relative deviation of peak height and peak position between benzene and H2S mixed gas spectrum and single substance were only 0.7% and 2%, indicating the adaptability of nafion-FAIMS to mixture detection. The signal linearity reached 98% in the H2S concentration range of 0.08-0.46 mg/m3, and the detection limit was 0.04 mg/m3.
  • 加载中
    1. [1]

    2. [2]

      MARUTANI E, ICHINOSE F. Intensive Care Med. Exp., 2020, 8(1):5.

    3. [3]

    4. [4]

      ZHAO C, GUO L, DONG J Y, CAI Z W. The Innovation, 2021, 2(4):100151.

    5. [5]

    6. [6]

      PANDEY S K, KIM K H, TANG K T. TrAC-Trends Anal. Chem., 2012, 32:87-99.

    7. [7]

      ALI F I M, AWWAD F, GREISH Y E, MAHMOUD S T. IEEE Sens. J., 2019, 19(7):2394-2407.

    8. [8]

      KUMAR V, MAJHI S M, KIM K H, KIM H W, KWON E E. Chem. Eng. J., 2021, 404:126472.

    9. [9]

      DU X X, MOU J H, ZENG H D, ZENG R S, JIANG Y R, LI H. Anal. Lett., 2021, 54(8):1377-1388.

    10. [10]

      HUO J, XU S, LAM K P. Cells, 2019, 8(6):541.

    11. [11]

      KOLAKOWSKII B M, MESTER Z. Analyst, 2007, 132(9):842-864.

    12. [12]

      EICEMAN G A, KRYLOV E V, KRYLOVA N S. Anal. Chem., 2004, 76(17):4937-4944.

    13. [13]

      WANG Q, XIE Y F, ZHAO W J, LI P, QIAN H, WANG X Z. Anal. Methods, 2014, 6(9):2965-2972.

    14. [14]

      SMITH R W, TOUTOUNGI D E, REYNOLDS J C, BRISTOW A W T, RAY A, SAGE A, WILSON I D, WESTON D J, BOYLE B, CREASER C S. J. Chromatogr. A, 2013, 1278:76-81.

    15. [15]

    16. [16]

    17. [17]

      JIANG D D, LI E Y, ZHOU Q H, WANG X, LI H W, JU B Y, GUO L, LIU D S, LI H Y. Anal. Chem., 2018, 90(8):5280-5289.

    18. [18]

      DANG M, LIU R D, DONG F S, LIU B, HOU K Y. TrAC-Trends Anal. Chem., 2022, 149:116542.

    19. [19]

    20. [20]

      LI H, WANG X H, TANG F, YANG J, DING L. Chin. J. Chem. Phys., 2010, 23(2):125-132.

    21. [21]

      AKSENOV A A, PASAMONTES A, PEIRANO D J, ZHAO W X, DANDEKAR A M, FIEHN O, EHSANI R, DAVIS C E. Anal. Chem., 2014, 86(5):2481-2488.

    22. [22]

      WANG H, LIU Y, LI S, WANG X, DENG J, CHEN C. Int. J. Mass Spectrom., 2019, 442:7-13.

    23. [23]

      ZHANG W, HUO F, YIN C. Org. Lett., 2019, 21(13):5277-5280.

    24. [24]

      KLEINHEINZ G T, ANGOLF B M. Nat. Environ. Pollut. Technol., 2016, 15(4):1279-1284.

    25. [25]

      WANG H W, CHRN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.

    26. [26]

      SZCZUREK A, MAZIOEJUK M, MACIEJEWSKA M, PIETRUCHA T, SIKORA T. Sens. Actuators, B, 2017, 240:1237-1244.

    27. [27]

      PENG L Y, JIANG D D, WANG Z Y, HUA L, LI H Y. Talanta, 2016, 153:295-300.

    28. [28]

      FERRARIS A, MESSANA A, AIRALE A G, SISCA L, PINHEIRE H D, ZEVOLA F, CARELLO M. Energies, 2019, 12(9):1773.

    29. [29]

    30. [30]

      LEE J Y, DINH T V, KIM D J, CHOI I Y, AHN J W, PARK S Y, KIM J C. Asian J. Atmos. Environ., 2019, 13(4):249-258.

    31. [31]

      LI X, HUANG D D, DU R, ZHANG Z J, CHAN C K, HUANG Z X, ZHOU Z. J. Visualized Exp., 2018, (133):e56465.

    32. [32]

      MAZIEJUK M, SZCZUREK A, MACIEJEWSKA M, PIETRUCHA T, SZYPOSZYNSKA M. Talanta, 2016, 152:137-146.

    33. [33]

      FANG P, JI Y L, SILBERN I, VINER R, OELLERICH T, PAN K T, URLAUB H. Anal. Chem., 2021, 93(25):8846-8855.

    34. [34]

  • 加载中
    1. [1]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    2. [2]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    3. [3]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    13. [13]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    16. [16]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    17. [17]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(15)
  • Abstract views(917)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return