Citation:
LI Shan, CHEN Zhen, LIU Chang-Jie, JIN Jiao, WANG Han, HU Jun, MA He, SHI Jia-Liang, REN Qian, CHENG Yu-Peng, LIU You-Jiang, CHEN Chi-Lai. Rapid Detection of Hydrogen Sulfide Gas at Ambient Humidity Based on Nafion-High-Field Asymmetric Waveform Ion Mobility Spectrometry Technology[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(6): 924-931.
doi:
10.19756/j.issn.0253-3820.221019
-
High-field asymmetric waveform ion mobility spectrometry(FAIMS) is a fast and sensitive field detection technology, but the detection of polar substances using FAIMS is easily affected by humidity. Based on that nafion tube could selectively and quickly filter water gas, a nafion-FAIMS technology was proposed for rapid detection of environmental hydrogen sulfide(H2S) gas under ambient humidity in this work. The self-made nafion-FAIMS device was used to study the stability of nafionFAIMS in detection of H2S under different humidity conditions, the separation and identification ability of H2S in the presence of typical environmental interferents, the linearity and the detection limit. The results showed that when the relative humidity was 5%-50%, the relative standard deviations(RSDs) of peak position and peak height of H2S spectrum were less than 0.4% and 0.2%, respectively, which were 10 times and 250 times smaller than that of single FAIMS, showing high recognition and quantitative stability. When the dispersion voltage was 1200 V, the relative deviation of peak height and peak position between benzene and H2S mixed gas spectrum and single substance were only 0.7% and 2%, indicating the adaptability of nafion-FAIMS to mixture detection. The signal linearity reached 98% in the H2S concentration range of 0.08-0.46 mg/m3, and the detection limit was 0.04 mg/m3.
-
-
-
[1]
-
[2]
MARUTANI E, ICHINOSE F. Intensive Care Med. Exp., 2020, 8(1):5.
-
[3]
-
[4]
ZHAO C, GUO L, DONG J Y, CAI Z W. The Innovation, 2021, 2(4):100151.
-
[5]
-
[6]
PANDEY S K, KIM K H, TANG K T. TrAC-Trends Anal. Chem., 2012, 32:87-99.
-
[7]
ALI F I M, AWWAD F, GREISH Y E, MAHMOUD S T. IEEE Sens. J., 2019, 19(7):2394-2407.
-
[8]
KUMAR V, MAJHI S M, KIM K H, KIM H W, KWON E E. Chem. Eng. J., 2021, 404:126472.
-
[9]
DU X X, MOU J H, ZENG H D, ZENG R S, JIANG Y R, LI H. Anal. Lett., 2021, 54(8):1377-1388.
-
[10]
HUO J, XU S, LAM K P. Cells, 2019, 8(6):541.
-
[11]
KOLAKOWSKII B M, MESTER Z. Analyst, 2007, 132(9):842-864.
-
[12]
EICEMAN G A, KRYLOV E V, KRYLOVA N S. Anal. Chem., 2004, 76(17):4937-4944.
-
[13]
WANG Q, XIE Y F, ZHAO W J, LI P, QIAN H, WANG X Z. Anal. Methods, 2014, 6(9):2965-2972.
-
[14]
SMITH R W, TOUTOUNGI D E, REYNOLDS J C, BRISTOW A W T, RAY A, SAGE A, WILSON I D, WESTON D J, BOYLE B, CREASER C S. J. Chromatogr. A, 2013, 1278:76-81.
-
[15]
-
[16]
-
[17]
JIANG D D, LI E Y, ZHOU Q H, WANG X, LI H W, JU B Y, GUO L, LIU D S, LI H Y. Anal. Chem., 2018, 90(8):5280-5289.
-
[18]
DANG M, LIU R D, DONG F S, LIU B, HOU K Y. TrAC-Trends Anal. Chem., 2022, 149:116542.
-
[19]
-
[20]
LI H, WANG X H, TANG F, YANG J, DING L. Chin. J. Chem. Phys., 2010, 23(2):125-132.
-
[21]
AKSENOV A A, PASAMONTES A, PEIRANO D J, ZHAO W X, DANDEKAR A M, FIEHN O, EHSANI R, DAVIS C E. Anal. Chem., 2014, 86(5):2481-2488.
-
[22]
WANG H, LIU Y, LI S, WANG X, DENG J, CHEN C. Int. J. Mass Spectrom., 2019, 442:7-13.
-
[23]
ZHANG W, HUO F, YIN C. Org. Lett., 2019, 21(13):5277-5280.
-
[24]
KLEINHEINZ G T, ANGOLF B M. Nat. Environ. Pollut. Technol., 2016, 15(4):1279-1284.
-
[25]
WANG H W, CHRN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.
-
[26]
SZCZUREK A, MAZIOEJUK M, MACIEJEWSKA M, PIETRUCHA T, SIKORA T. Sens. Actuators, B, 2017, 240:1237-1244.
-
[27]
PENG L Y, JIANG D D, WANG Z Y, HUA L, LI H Y. Talanta, 2016, 153:295-300.
-
[28]
FERRARIS A, MESSANA A, AIRALE A G, SISCA L, PINHEIRE H D, ZEVOLA F, CARELLO M. Energies, 2019, 12(9):1773.
-
[29]
-
[30]
LEE J Y, DINH T V, KIM D J, CHOI I Y, AHN J W, PARK S Y, KIM J C. Asian J. Atmos. Environ., 2019, 13(4):249-258.
-
[31]
LI X, HUANG D D, DU R, ZHANG Z J, CHAN C K, HUANG Z X, ZHOU Z. J. Visualized Exp., 2018, (133):e56465.
-
[32]
MAZIEJUK M, SZCZUREK A, MACIEJEWSKA M, PIETRUCHA T, SZYPOSZYNSKA M. Talanta, 2016, 152:137-146.
-
[33]
FANG P, JI Y L, SILBERN I, VINER R, OELLERICH T, PAN K T, URLAUB H. Anal. Chem., 2021, 93(25):8846-8855.
-
[34]
-
[1]
-
-
-
[1]
Yuecheng ZHANG , Fan YANG , Shiyu ZHANG , Chengjun MA , Rui TIAN , Xuehua SUN , Haoyu LI , Lingbo SUN , Hongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415
-
[2]
Xingyu Liao , Xiangming Yi , Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039
-
[3]
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
-
[4]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[5]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[6]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[7]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[8]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
-
[9]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[10]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[11]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[12]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[13]
Lin LI , Le CHEN , Lingjie HOU , Jiaqi JING , Jiayu DING , Tao ZHOU , Ruiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130
-
[14]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[15]
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
-
[16]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[17]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[18]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[19]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[20]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[1]
Metrics
- PDF Downloads(15)
- Abstract views(916)
- HTML views(189)
Login In
DownLoad: