Citation: WU Hai-Jiang,  ZHANG Ya-Jiao,  LIU Qin,  CHEN Jia,  XU Bin,  XU Hua,  XIE Jian-Wei. Comparison of Different Hydrolysis Methods in DNA Adducts Analysis and Application[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1048-1056. doi: 10.19756/j.issn.0253-3820.221018 shu

Comparison of Different Hydrolysis Methods in DNA Adducts Analysis and Application

  • Corresponding author: XIE Jian-Wei, xiejianwei@bmi.ac.cn
  • Received Date: 12 January 2022
    Revised Date: 30 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22104153).

  • The identification and quantification of DNA adducts is an important technical issue in the research of DNA damage, epigenetics and genotoxic impurities screening. Various DNA hydrolysis methods with individual advantages are available for different applicable analytical purposes to produce bases, nucleosides or nucleic acid fragments. By taking the classic alkylation reagent mustard gas as a model compound, three common DNA hydrolysis methods including thermal hydrolysis, acid hydrolysis and enzymatic hydrolysis were comparatively used to pretreat the sample from in vitro incubation solution or in vivo animal exposure experiments. The produced DNA adducts were screened and quantitatively detected by mass spectrometry. Hydrolysis efficiency of DNA adducts in different analytical samples as well as different sites and adduct forms were investigated. Results showed that there were differences in the stability of DNA adducts derived from different base modification sites. The N-site adducts of guanine and adenine were relatively stable under each hydrolysis condition, while O6 site adducts of guanine were unstable to acid and thermal hydrolysis. In comparison, the efficiency of thermal hydrolysis was lower, while the acid hydrolysis was more efficient which improved 10.4%-94.9% hydrolysis yields and DNA-base adducts were more than 99% among the products, thus suitable for the quantitative analysis of structure-known DNA adducts by mass spectrometry. For enzymatic hydrolysis method, it could produce various adduct forms, such as base- and/or nucleoside-adducts, i.e., the product information was rich, which was suitable for screening and identification of structure-unknown adducts. However, the enzymatic hydrolysis efficiency was often affected by the factors such as DNA modification site, matrix effect and enzymatic hydrolysis conditions which might consequently affect the accuracy of DNA adduct quantification.
  • 加载中
    1. [1]

      JACKSON S P, BARTEK J. Nature, 2009, 461(7267):1071-1078.

    2. [2]

      YU Y, WANG P, CUI Y, WANG Y. Anal. Chem., 2018, 90(1):556-576.

    3. [3]

      BACH J, PEREMARTI J, ANNANGI B, MARCOS R, HERNANDEZ A. Arch. Toxicol., 2016, 90(8):1893-1905.

    4. [4]

      NGO L P, OWITI N A, SWARTZ C, WINTERS J, SU Y, GE J, XIONG A, HAN J, RECIO L, SAMSON L D, ENGELWARD B P. Nucleic Acids Res., 2020, 48(3):e13.

    5. [5]

      NAKAGAWA T, WAKUI M, HAYASHIDA T, NISHIME C, MURATA M. Anal. Bioanal. Chem., 2019, 411(27):7221-7231.

    6. [6]

      MURRAY K J, CARLSON E S, STORNETTA A, BALSKUS E P, VILLALTA P W, BALBO S. Anal. Chem., 2021, 93(14):5754-5762.

    7. [7]

      GUO J S, TURESKY R J. High-throughput, 2019, 8(2):1-25.

    8. [8]

      CHANG Y J, COOKE M S, HU C W, CHAO M R. Arch. Toxicol., 2018, 92(8):2665-2680.

    9. [9]

      GUO J, TURESKY R J, TARIFA A, DECAPRIO A P, COOKE M S, WALMSLEY S J, VILLALTA P W. Chem. Res. Toxicol., 2020, 33(4):852-854.

    10. [10]

      HU C W, CHANG Y J, COOKE M S, CHAO M R. Anal. Chem., 2019, 91(23):15193-15203.

    11. [11]

      YUE L, WEI Y, CHEN J, SHI H, LIU Q, ZHANG Y, HE J, GUO L, ZHANG T, XIE J, PENG S. Chem. Res. Toxicol., 2014, 27(4):490-500.

    12. [12]

      YUE L, ZHANG Y, CHEN J, ZHAO Z, LIU Q, WU R, GUO L, HE J, ZHAO J, XIE J, PENG S. Chem. Res. Toxicol., 2015, 28(3):532-540.

    13. [13]

      ZHANG Y, YUE L, NIE Z, CHEN J, GUO L, WU B, FENG J, LIU Q, XIE J. J. Chromatogr. B, 2014, 961:29-35.

    14. [14]

      GOGGIN M, ANDERSON C, PARK S, SWENBERG J, WALKER V, TRETYAKOVA N. Chem. Res. Toxicol., 2008, 21(5):1163-1170.

    15. [15]

      GEDIK C M, COLLINS A, DUBOIS J, DUEZ P, KOUEGNIGAN L, REES J F, LOFT S, MOLLER P, JENSEN A, POULSEN H, RISS B, WEIMANN A, CADET J, DOUKI T, RAVANT J L, SAUVAIGO S, FAURE H, MOREL I, MORIN B, EPE B, ECKERT I, HARTWIG A, SCHWERDTLE T, DOLARA P, GIOVANNELLI L, LODOVICI M, GUGLIELMI F, OLINSKI R, BIALKOWSKI K, FOKSINSKI M, GACKOWSKI D, DURACKOVA Z, MUCHOVA J, KORYTAR P, SIVONOVA M, DUSINSKA M, MISLANOVA C, PETROVSKA H, SMOLKOVA B, VINA J, LLORET A, SAEZ G, MOLLER L, HOFER T, ERIKSSON H, GREMAUD E, HERBERT K, WILD C, KELLY F, DUNSTER C, WHITE A, WOOD S, VAUGHAN N, ESCOD D. FASEB J., 2005, 19(1):82-84.

    16. [16]

      CRAIN P F. Methods Enzymol., 1990, 193:782-790.

    17. [17]

      QUINLIVAN E P, GREGORY J F. Anal. Biochem., 2008, 373(2):383-385.

    18. [18]

      HU C W, CHANG Y J, COOKE M S, CHAO M R. Anal. Chem., 2019, 91(23):15193-15203.

    19. [19]

      NOLL D M, MASON T M, MILLER P S. Chem. Rev., 2006, 106(2):277-301.

    20. [20]

      KEHE K, SZINICZ L. Toxicology, 2005, 214(3):198-209.

    21. [21]

      CHENG X, LIU C, YANG Y, LIANG L, CHEN B, YU H, XIA J, LIU S, LI Y. Toxicol. Lett., 2021, 344:46-57.

    22. [22]

      GUO J, CHEN H, UPADHYAYA P, ZHAO Y, TURESKY R J, HECHT S S. Chem. Res. Toxicol., 2020, 33(9):2475-2486.

  • 加载中
    1. [1]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    2. [2]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    3. [3]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    4. [4]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    5. [5]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    8. [8]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    9. [9]

      Xiaolong LiChangjiang LiChaopeng ShiJiarun WangBei YanXianjin XiaoTongbo Wu . CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects. Chinese Chemical Letters, 2025, 36(7): 110507-. doi: 10.1016/j.cclet.2024.110507

    10. [10]

      Le YangHongye WeiZhihe QingLinlin Wu . AuNP@DNA nanoflares: Preparation and application in bioanalysis and biomedicine. Chinese Chemical Letters, 2025, 36(8): 110524-. doi: 10.1016/j.cclet.2024.110524

    11. [11]

      Haozhi LeiQian XiaXiqiu WangYang SunWeihong Tan . Simulation of immune signal transduction through DNA strand displacement. Chinese Chemical Letters, 2025, 36(12): 110941-. doi: 10.1016/j.cclet.2025.110941

    12. [12]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    13. [13]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    14. [14]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    15. [15]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    16. [16]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    17. [17]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    18. [18]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    19. [19]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    20. [20]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

Metrics
  • PDF Downloads(16)
  • Abstract views(1125)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return