Citation: LU Hui-Ting,  LI Jin-Ze,  WANG Ye-Yu,  GE Ru-Jiao,  DONG Hai-Feng. Research Progress of Microneedles in Interstitial Fluid Bioanalysis[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 819-829,858. doi: 10.19756/j.issn.0253-3820.221013 shu

Research Progress of Microneedles in Interstitial Fluid Bioanalysis

  • Corresponding author: LI Jin-Ze,  DONG Hai-Feng, 
  • Received Date: 8 January 2022
    Revised Date: 23 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 21874008, 22004006, 22022407, 21890740, 21890742), the Special Foundation for State Major Research Program of China(No.2019YFC1606603) and the 2021 Stability Support Plan of Shenzhen University(No. 8940206/0200).

  • The collection and analysis of biological samples is the effective method for disease diagnosis and treatment. Blood sampling and analysis are standard methods in clinical diagnosis, but they are commonly invasive and usually cause tissue damage and patient discomfort. Interstitial fluid(ISF) is a promising alternative candidate of blood owing to the rich biological information; however,it is still great challenge to minimally and non-invasively sample sufficient targets in skin ISF. In recent years, microneedles(MNs) have received considerable attention in ISF research due to their high efficiency, safety, convenience and painless characteristics. As the micron-level needle array, MNs have achieved remarkable results in medical cosmetology, molecular delivery, diagnostic monitoring and disease treatment, but little attention has been paid to the application of MNs for bioanalysis in ISF. This review summarizes the materials of microneedle, and details the application of MNs in ISF sampling,biomarker capture and analysis, and wearable sensing, while exploring the development prospects of MNs as an emerging research field and summarizing the challenges to be considered and existing in the transformation of technological achievements.
  • 加载中
    1. [1]

      YANG M Z, LIU Y, JIANG X Y. Chem. Soc. Rev., 2019, 48(3):850-884.

    2. [2]

      SUN W J, LEE J, ZHANG S M, BENYSHEK C, DOKMECI M R, KHADEMHOSSEINI A. Adv. Sci., 2019, 6(1):1801039.

    3. [3]

      AYALA E S, MEURET A E, RITZ T. J. Psychiatr. Res., 2009, 43(15):1235-1242.

    4. [4]

      MA G J, WU C W. J. Controlled Release, 2017, 251:11-23.

    5. [5]

      TANZMAN E S, MANCHESTER R A. N. Engl. J. Med., 2001, 345(26):538-541.

    6. [6]

      COMBADIERE B, MAHE B. Comp. Immunol. Microb., 2008, 31(2-3):293-315.

    7. [7]

      GAO W, BROOKS G A, KLONOFF D C. J. Appl. Physiol., 2018, 124(3):548-556.

    8. [8]

      GARCIA-GUZMAN J J, PEREZ-RAFOLS C, CUARTERO M, CRESPO G A. TrAC-Trends Anal. Chem., 2021, 135:116148.

    9. [9]

      HEIKENFEID J, JAJACK A, ROGERS J, GUTRUF P, TIAN L, PAN T, LI R, KHINE M, KIM J, WANG J, KIM J.Lab Chip, 2018, 18(2):217-248.

    10. [10]

      TORIN H J, SIVALOGANATHAN S, KOHANDEL M, FOLDVARI M. Wiley Interdiscip. Rev. Nanomed.Nanobiotechnol., 2011, 3(5):449-462.

    11. [11]

      BOUWSTRA J A, PONEC M. Biochim. Biophys. Acta, 2006, 1758(12):2080-2095.

    12. [12]

      GERSTEL M S, PLACE V A. United States Patent, US3964482A.17, 05, 1971.

    13. [13]

      VAN DAMME P, OOSTERHUIS-KAFEJA F, VAN DER WIELEN M, ALMAGOR Y, SHARON O, LEVIN Y.Vaccine, 2009, 27(3):454-459.

    14. [14]

      VANGER M K, JISKOOT W, BOUWSTRA J. J. Controlled Release, 2012, 161(2):645-655.

    15. [15]

      ROUPHAEL N G, PAINE M, MOSLEY R, HENRY S, MCALLISTER D V, KALLURI H, PEWIN W, FREW P M, YU T W, THORNBURG N J, KABBANI S, LAI L L, VASSILIEVA E V, SKOUNTZON I, COMPANS R W, MULLIGAN M J, PRAUSNITZ M R. Lancet, 2017, 390(10095):649-658.

    16. [16]

      SOKHANVAR S, SHEKHI M, MAZLOMZADEH S, GOLMOHAMMADI Z. J. Cardiovasc. Thorac. Res., 2011, 3(2):57-61.

    17. [17]

      DIXON R V, SKARIA E, LAU W M, MANNING P, BIRCH-MACHIN M A, MOGHIMI S M, NG K W. Acta Pharm. Sin. B, 2021, 11(8):2344-2361.

    18. [18]

      XU T L, SHI W X, HUANG J R, SONG Y C, ZHANG F L, XU L P, ZHANG X J, WANG S T. ACS Nano, 2017, 11(1):621-626.

    19. [19]

      GARCIA-GUZMAN J J, PEREZ-RAFOLS C, CUARTERO M, CRESPO G A. TrAC-Trends Anal. Chem., 2021, 135:116148.

    20. [20]

      BANGA A K. Expert Opin. Drug Delivery, 2009, 6(4):343-354.

    21. [21]

      LARRANETA E, LUTTON R E M, WOOLFSON A D, DONNELLY R F. Mater. Sci. Eng., R, 2016, 104:1-32.

    22. [22]

      JIN Q C, CHEN H J, LI X L, HUANG X S, WU Q N, HE G, HANG T, YANG C D, JIANG Z, LI E L, ZHANG A H, LIN Z H, LIU F M, XIE X. Small, 2019, 15(6):804298.

    23. [23]

      HWA K Y, SUBRAMANI B, CHANG P W, CHIEN M, HUANG J T. Int. J. Electrochem. Sci., 2015, 10(3):2455-2466.

    24. [24]

      WANG M, HU L Z, XU C J. Lab Chip, 2017, 17(8):1373-1387.

    25. [25]

      RAD Z F, PREWETT P D, DAVIES G J. Beilstein J. Nanotechnol., 2021, 12:1034-1046.

    26. [26]

      SJOBOM U, CHRISTENSON K, HELLSTROM A, NILSSON A K. Front. Immunol., 2020, 11:597632.

    27. [27]

      TAYLOR R M, MILLER P R, EBRAHIMI P, POLSKY R, BACA J T. Lab Anim., 2018, 52(5):526-530.

    28. [28]

      NILSSON A K, SJOBOM U, CHRISTENSON K, HELLSTROM A. Lipids Health Dis., 2019, 18(1):164.

    29. [29]

      LIU X, KRUGER P, MAIBACH H, COLDITZ P B. ROBERTS M S. Adv. Drug Delivery Rev., 2014, 77:40-49.

    30. [30]

      CHEN L, ZHANG C, XIAO J, YOU J, ZHANG W, LIU Y, XU L, LIU A, XIN H, WANG X. Mat. Sci. Eng., C, 2020, 109:110402.

    31. [31]

      WANG P M, CORNWELL M, PRAUSNITZ M R. Diabetes Technol. Ther., 2005, 7(1):131-141.

    32. [32]

      KOLLURU C, WILLIAMS M, CHAE J, PRAUSNITZ M R. Adv. Healthc. Mater., 2019, 8(3):1801262.

    33. [33]

      STRAMBINI L M, LONGO A, DILIHENTI A, BARILLARO G. Lab Chip, 2012, 12(18):3370-3379.

    34. [34]

      XUE P, ZHANG L, XU Z G, YAN J J, GU Z, KANG Y J. Appl. Mater. Today, 2018, 13:144-157.

    35. [35]

      MADDEN J, O'MAHONY C, THOMPSON M, O'RIORDAN A, GALVIN P. Sens. Bio-Sens. Res., 2020, 29:100348.

    36. [36]

      NICHOLAS D, LOGAN K A, SHENG Y J, GAO J H, FARRELL S, DIXON D, CALLAN B, MCHALE A P, CALLAN J F. Int. J. Pharm., 2018, 547(1-2):244-249.

    37. [37]

      LEE H, BONFANTE G, SASAKI Y, TAKAMA N, MINAMI T, KIM B. Med. Devices Sens., 2020, 3(4):e10109.

    38. [38]

      SARABI M R, AHMADPOUR A, YETISEN A K, TASOGLU S. Appl. Sci., 2021, 11(12):5329.

    39. [39]

      LEE D S, LI C G, IHM C, JUNG H. Sens. Actuator, B, 2018, 255:384-390.

    40. [40]

      LI C G, LEE C Y, LEE K, JUNG H. Biomed. Microdevices, 2013, 15(1):17-25.

    41. [41]

    42. [42]

      ELTAYIB E, BRADY A J, CAFFAREL-SALADOR E, GONZALEZ-VAZQUEZ P, ZAID A A, MCCARTHY H O, MCELNAY J C, DONNELLY R F. Eur. J. Pharm. Biopharm., 2016, 102:123-131.

    43. [43]

      CHEN J, WANG M, YE Y, YANG Z, RUAN Z, JIN N. Biomed. Microdevices, 2019, 21(3):63.

    44. [44]

      CHANG H, ZHENG M, YU X, THAN A, SEENI R Z, KANG R, TIAN J, KHANH D P, LIU L, CHEN P, XU C.Adv. Mater., 2017, 29(37):1702243.

    45. [45]

      ZHU J, ZHOU X, KIM H J, QU M, JIANG X, LEE K, REN L, WU Q, WANG C, ZHU X, TEBON P, ZHANG S, LEE J, ASHAMAKHI N, AHADIAN S, DOKMECI M R, GU Z, SUN W, KHADEMHOSSEINI A. Small, 2020, 16(16):1905910.

    46. [46]

      JAMALEDIN R, YIU C K Y, ZARE E N, NIU L N, VECCHIONE R, CHEN G J, GU Z, TAY F R, MAKVAND P.Adv. Mater., 2020, 32(33):2002129.

    47. [47]

      CORRIE S R, FERNANDO G J, CRICHTON M L, BRUNCK M E, ANDERSO C D, KENDALL M A. Lab Chip, 2010, 10(20):2655-2658.

    48. [48]

      COFFEY J W, CORRIE S R, KENDALL M A F. Biomaterials, 2018, 170:49-57.

    49. [49]

      ZHANG X X, CHEN G P, BIAN F K, CAI L J, ZHAO Y J. Adv. Mater., 2019, 31(37):1902825.

    50. [50]

      KOOPAIE M, ABEDINEJAD F, MANIFAR S, MOUSAVI R, KOLAHDOOZ S, SHAMSHIR A. Gene Rep., 2021, 25:101317

    51. [51]

      BAUMANN B, ACOSTA A M, RICHARDS Z, DEATON R, SAPATYNSKA A, MURPHY A, KAJDACSYBALLA A, GANN P H, NONN L. Am. J. Pathol., 2019, 189(4):911-923.

    52. [52]

      AL SULAIMAN S D, CHANG J Y H, BENNETT N R, TOPPOUZI H, HIGGINS C A, IRVINE D J, LADAME S.ACS Nano, 2019, 13(8):9620-9628.

    53. [53]

      YANG B, FANG X E, KONG J L. Adv. Funct. Mater., 2020, 30(24):2000591.

    54. [54]

      GOUD K Y, MOONLA C, MISHRA R K, YU C, NARAYAN R, LITVAN I, WANG J. ACS Sens., 2019, 4(8):2196-2204.

    55. [55]

      MOHAN A M V, WINDMILLER J R, MISHRA R K, WANG J. Biosens. Bioelectron., 2017, 91:574-579.

    56. [56]

      JIN Q, CHEN H J, LI X, HUANG X, WU Q, HE G, HANG T, YANG C, JIANG Z, LI E, ZHANG A, LIN Z, LIU F, XIE X. Small, 2019, 15(6):1804298.

    57. [57]

      LI Q L, ZHANG Y, FAN H L, GONG Y J, XU Y, LV Q Y, XU Y R, XIAO F, WANG S, WANG Z, WANG L.Biosens. Bioelectron., 2021, 191:113474.

  • 加载中
    1. [1]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    2. [2]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    7. [7]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    16. [16]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    17. [17]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    18. [18]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(20)
  • Abstract views(1134)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return