Citation: GUAN Xin,  WU Yi,  XU Bing,  JIN Zheng-Yang,  LIANG Chong-Yang. Detection of Cytomegalovirus Based on Loop-Mediated Isothermal Amplification Combined with Surface Enhanced Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 424-432. doi: 10.19756/j.issn.0253-3820.221007 shu

Detection of Cytomegalovirus Based on Loop-Mediated Isothermal Amplification Combined with Surface Enhanced Raman Spectroscopy

  • Corresponding author: LIANG Chong-Yang, liang@jlu.edu.cn
  • Received Date: 4 January 2022
    Revised Date: 18 January 2022

    Fund Project: Supported by the Science and Technology Planning Project of Jilin Province, China (No.20190304035YY).

  • Cytomegalovirus (CMV) is very harmful to patients with organ transplantation, pregnant women and newborns. At present,quantitative real-time PCR (qPCR) is the most important method for clinical detection of CMV. However, due to the high cost and complex operation of qPCR, it is difficult to be applied in rapid detection on site. Loop mediated isothermal amplification (LAMP) is a sensitive, simple and rapid nucleic acid detection technology. LAMP shows better amplification efficiency than qPCR, but it is easy to produce dimer between multiple pairs of primers, which will result in nonspecific amplification, and thus cause false positive results. In this study, two probes with complementary sequences were designed to connect magnetic beads (MNs) and silver nanoparticles (AgNPs) modified with Raman probe signal molecule 4-mercaptobenzoic acid (4-MBA). A stronger signal on the surface of AgNPs was obtained by surface enhanced Raman scattering. By using the designed method with the above principle, the standard nucleic acid sequence of CMV was detected, and the detection limit reached 1000 copies/mL. At the level of structural principle of amplification products, the false positive problem perplexing LAMP technology was solved, which showed reference value for the development of new rapid detection technology.
  • 加载中
    1. [1]

      GRIFFITHS P, BARANIAK I, REEVES M. J. Pathol., 2015, 235(2):288-297.

    2. [2]

      YADAV S K, SAIGAL S, CHOUDHARY N S, SAHA S, KUMAR N, SOIN A S. J. Clin. Exp. Hepatol., 2017, 7(2):144-151.

    3. [3]

      LIN X, LU T, LI S, XIE X, CHEN X, JIANG J, QIN Y, XIE Z, LIU M, OUYANG M, ZHONG N, SONG Y, ZHOU C. Clin. Transl. Oncol., 2021, 23(2):389-396.

    4. [4]

      WESLEY E, UPPENDAHL L D, FELICES M, DAHL C, MESSELT A, BOYLAN K L M, SKUBITZ A P N, VOGEL R I, NELSON H H, GELLER M A. Gynecol. Oncol., 2021, 160(1):193-198.

    5. [5]

      SHAKER ARDAKANI M, PAK F, KOKHAEI P, FAZELI M S, SHAKIBA Y, TABATABAEI YAZDI S M, ABBASIAN A, NOURIZADEH M. Iran. J. Allergy Asthma Immunol., 2019, 18(4):379-392.

    6. [6]

      WILSKI N A, SNYDER C M. Vaccines (Basel), 2019, 7(3):62.

    7. [7]

      LERIAS J R, PARASCHOUDI G, SILVA I, MARTINS J, DE SOUSA E, CONDECO C, FIGUEIREDO N, CARVALHO C, DODOO E, JAGER E, RAO M, MAEURER M. Int. J. Mol. Sci., 2019, 20(8):1986.

    8. [8]

      SCHLUCKER S. Angew. Chem., Int. Ed., 2014, 53(19):4756-4795.

    9. [9]

      CHU D K W, PAN Y, CHENG S M S, HUI K P Y, KRISHNAN P, LIU Y, NG D Y M, WAN C K C, YANG P, WANG Q, PEIRIS M, POON L L M. Clin. Chem., 2020, 66(4):549-555.

    10. [10]

      CORMAN V M, LANDT O, KAISER M, MOLENKAMP R, MEIJER A, CHU D K, BLEICKER T, BRUNINK S, SCHNEIDER J, SCHMIDT M L, MULDERS D G, HAAGMANS B L, VAN DER VEER B, VAN DEN BRINK S, WIJSMAN L, GODERSKI G, ROMETTE J L, ELLIS J, ZAMBON M, PEIRIS M, GOOSSENS H, REUSKEN C, KOOPMANS M P, DROSTEN C. Eurosurveillance, 2020, 25(3):2000045.

    11. [11]

      LOEFFELHOLZ M J, TANG Y W. Emerging Microbes Infect., 2020, 9(1):747-756.

    12. [12]

      PANNO S, MATIC S, TIBERINI A, CARUSO A G, BELLA P, TORTA L, STASSI R, DAVINO A S. Plants (Basel), 2020, 9(4):461.

    13. [13]

      ROY S, WEI S X, YING J L Z, SAFAVIEH M, AHMED M U. Biosens. Bioelectron., 2016, 86:346-352.

    14. [14]

      VARGA A, JAMES D. J. Virol. Methods, 2006, 138(1-2):184-190.

    15. [15]

      ZHAO L H, MA Y Y, WANG H, ZHAO S P, ZHAO W M, LI H, WANG L Y. Acta Biochim. Biophys. Sin., 2006, 38(10):731-736.

    16. [16]

      BUDZISZEWSKA M, WIECZOREK P, OBREPALSKA-STEPLOWSKA A. Arch. Virol., 2016, 161(5):1359-1364.

    17. [17]

      KOGOVŠEK P, MEHLE N, PUGELJ A, JAKOMIN T, SCHROERS H, RAVNIKAR M, DERMASTIA M. Eur. J. Plant Pathol., 2016, 148(1):75-84.

    18. [18]

      KANEKO H, KAWANA T, FUKUSHIMA E, SUZUTANI T. J. Biochem. Biophys. Methods, 2007, 70(3):499-501.

    19. [19]

      WONG Y P, OTHMAN S, LAU Y L, RADU S, CHEE H Y. J. Appl. Microbiol., 2018, 124(3):626-643.

    20. [20]

      MOEHLING T J, CHOI G, DUGAN L C, SALIT M, MEAGHER R. J. Expert Rev. Mol. Diagn., 2021, 21(1):43-61.

    21. [21]

      URRUTIA-CABRERA D, LIOU R H, WANG J H, CHAN J, HUNG S S, HEWITT A W, MARTIN K R, EDWARDS T L, KWAN P, WONG R C. Sci. Rep., 2021, 11(1):22493.

    22. [22]

      SHA M Y, XU H, NATAN M J, CROMER R. J. Am. Chem. Soc., 2008, 130(51):17214-17215.

    23. [23]

      QIAN X, PENG X H, ANSARI D O, YIN-GOEN Q, CHEN G Z, SHIN D M, YANG L, YOUNG A N, WANG M D, NIE S. Nat. Biotechnol., 2008, 26(1):83-90.

    24. [24]

      ZONG C, XU M, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    25. [25]

      LEE P C, MEISEL D. J. Phys. Chem., 1982, 86(17):3391-3395.

    26. [26]

      TANG W, ELMORE S H, FAN H, THORNE L B, GULLEYM L. Diagn. Mol. Pathol., 2008, 17(3):166.

    27. [27]

      JONAS T, EDGAR S, CHAMBARO H M, LIYWALII M, LUBABA C H, PANDEY G S, AYATO T, GERALD M, MWEENE A S. Onderstepoort J. Vet.Res., 2016, 83(1):1-5.

    28. [28]

      NAGAMINE K, HASE T, NOTOMI T. Mol. Cell. Probes, 2002, 16(3):223-229.

    29. [29]

      MCFARLAND A D, VAN DUYNE R P. Nano. Lett., 2003, 3(8):1057-1062.

    30. [30]

      PARAMELLE D, SADOVOY A, GORELIK S, FREE P, HOBLEY J, FERNIG D G. Analyst, 2014, 139(19):4855-4861.

    31. [31]

      RHEE J Y, PECK K R, LEE N Y, SONG J H. Transplant. Proc., 2011, 43(7):2624-2629.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    15. [15]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    17. [17]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    18. [18]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    19. [19]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

Metrics
  • PDF Downloads(9)
  • Abstract views(1215)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return