Citation: WU Yan,  GUO Jun,  WANG Yue-nan,  WEI Hang,  SHAO Dong-rui. Identification and Analysis on Flavor Compounds of Raw Milk of Six Kinds of Livestocks by Proton Transfer Reaction-Time of Flight-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 643-658. doi: 10.19756/j.issn.0253-3820.221003 shu

Identification and Analysis on Flavor Compounds of Raw Milk of Six Kinds of Livestocks by Proton Transfer Reaction-Time of Flight-Mass Spectrometry

  • Corresponding author: GUO Jun, guojunge@imau.edu.cn
  • Received Date: 3 January 2022
    Revised Date: 22 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 31760489)

  • Flavor compounds of livestock milk mainly include acids, esters, ketones, aldehydes and alkanes, however the composition of flavor compound of each animal milk may related to species, forage, metabolism disorder, as well other complicated factors. In this study, a total of 53 raw milk samples of Mongolia horse, Bactrian camel, Holstein cow, Saanen goat, Maiwa yak and Murrah buffalo were collected. Flavor compounds of raw milk were determined and identified by proton transfer reaction-time of flight-mass spectrometry(PTR-TOF-MS), and multivariate statistical analysis was conducted to observe the natural clustering characteristics of six kinds of livestock milk by their flavor compounds. SIMCA and PCA-Class discrimination model were constructed to evaluate the feasibility of authentication on species, geographical origin/local varieties of raw milk by their flavor compounds. As results, there were 27, 23, 16, 21, 21 and 18 kinds of flavor compounds identified in the raw milk of Mongolia horse, Bactrian camel, Holstein cow, Saanen goat, Maiwa yak and Murrah buffalo, respectively, mainly were ketones, acids, aldehydes, alcohols and sulfur compounds. Multivariate statistical analysis showed that six kinds of livestock raw milk were clustered into six groups and the clustering distance consistent with taxonomy of these species. Mongolia horse and Bactrian camel milk clusters were both separated by geographical origins. Alxa camels and Xinjiang camel milk clusters from same origin were separated but did not influence original separation. Six species of raw milk of livestock were identified, and the accuracy of external verification of SIMCA and PCA-class model were 92.72% and 98.38% respectively. The external verification accuracy of Mongolian horse milk and Bactrian camel milk from different geographical regions and local varieties were above 83.00%. The results showed that the authentication of species, geographical origin/local varieties of animal milk by flavor compounds or MS fingerprint modeling was promising. The study introduced another innovative strategy and methodology to authentication of species, geographical origin/local varieties of animal milk.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      CHI X L, SHAO Y W, PAN M H, YANG Q Y, YANG Y, ZHANG X M, AI N S, SUN B G. Eur. Food Res.Technol., 2021, 247(6):1539-1551.

    5. [5]

      HUANG G X, LI N, LIU K Z, YANG J Y, ZHAO S G, ZHENG N, ZHOU J H, ZHANG Y D, WANG J Q. Front.Nutr., 2022, 9:831178.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      AI N S, LIU H L, WANG J, ZHANG X M, ZHANG H J, CHEN H T, HUANG M Q, LIU Y G, ZHENG F P, SUN B G. Anal. Methods, 2015, 7(10):4278-4284.

    10. [10]

    11. [11]

      SFAKIANAKIS P, TZIA C. Int. Dairy J., 2017, 75:120-128.

    12. [12]

    13. [13]

      VAUTZ W, HARIHARAN C, WEIGEND M. Ecol. Evol., 2018, 8(9):4370-4377.

    14. [14]

    15. [15]

      YIN J X, WU M F, LIN R M, LI X, DING H, HAN L F, YANG W Z, SONG X B, LI W L, QU H B, YU H S, LI Z.Microchem. J., 2021, 168:106527.

    16. [16]

      BIASIOLI F, GASPERI F, YERETZIAN C, MARK T D. TrAC-Trends Anal Chem., 2011, 30(7):968-977.

    17. [17]

      SULZER P, EDTBAUER A, HARTUNGEN E, JURSCHIK S, JORDAN A, HANEl G, FEIL S, JAKSCH S,MARK L, MARK T D. Int. J. Mass Spectrom., 2012, 321:66-70.

    18. [18]

      JORDAN A, HAIDACHER S, HANEL G, HARTUNGEN E, MARK L, SEEHAUSER H, SCHOTTKOWSKY R,SULZ ER P, MARK T D. Int. J. Mass Spectrom., 2009, 286(2-3):122-128.

    19. [19]

      WANG X, CAI Y, WANG J, ZHAO Y F. Atmos. Environ., 2021, 245:118045.

    20. [20]

      TELAGATHOTI A, PROBST M, KHOMENKO I, BIASIOLI F, PEINTNER U. J. Fungi, 2021, 7(1):66.

    21. [21]

      WHITE I R, BLAKE R S, TAYLOR A J, MONKS P S. Metabolomics, 2016, 12(3):57.

    22. [22]

      ZANIN R C, SMRKE S, KUROZAWA L E, YAMASHITA F, YERETZIAN C. Food Chem., 2020, 317:126455.

    23. [23]

      ZHU L, SCHADE G W, NIELSEN C J. Environ. Sci. Technol., 2013, 47(24):14306-14314.

    24. [24]

      PEDERSEN J, NYORD T, HANSEN M J, FEILBERG A. Sci. Total Environ., 2021, 767:144175.

    25. [25]

      ARAGHIPOUR N, COLINEAU J, KOOT A, AKKERMANS W, ROJAS J M M, BEAUCHAMP J, WISTHALER A,MARK T D, DOWNEY G, GUILLOU C, MANNINA L, RUTH S V. Food Chem., 2008, 108(1):374-383.

    26. [26]

      SILVIS I, LUNING P A, KLOSE N, JANSEN M, VAN R S M. Food Chem., 2019, 271:318-327.

    27. [27]

      BOTTIROLI R, PEDROTTI M, APREA E, BIASIOLI F, FOGLIANO V, GASPERI F. J. Mass Spectrom., 2020,55(11):e4505.

    28. [28]

      SOARES R A N, VARGAS G, DUFFIELD T, SCHENKEL F, SQUIRES E J. J. Dairy Sci., 2021, 104(9):10076-10089.

    29. [29]

  • 加载中
    1. [1]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    2. [2]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    3. [3]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    12. [12]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    13. [13]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    14. [14]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

Metrics
  • PDF Downloads(19)
  • Abstract views(837)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return