Citation: YANG Zhan,  XU Bin,  CHEN Jia,  WU Jian-Feng,  HE Yue-Zhong,  XIE Jian-Wei. Identification of Some Novel Damage Biomarkers of Sulfur Mustard by High Resolution Mass Spectrometry in Vitro[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1733-1742. doi: 10.19756/j.issn.0253-3820.211256 shu

Identification of Some Novel Damage Biomarkers of Sulfur Mustard by High Resolution Mass Spectrometry in Vitro

  • Corresponding author: WU Jian-Feng, ammswjf@163.com
  • Received Date: 28 March 2021
    Revised Date: 2 June 2021

    Fund Project: Supported by the National Key Research and Development Program of China(Nos.2018YFC1602600, 2020YFF0305000).

  • Sulfur mustard (SM) is a typically representative alkylating agent with high reactivity. SM can produce a variety of hydrolytic and oxidative metabolites including various proteins and nucleic acid adducts. Among them, divinyl sulfone (DVS) is an important oxidative metabolite that should be paid more attention, which has high reactivity and toxicity close to SM. In this study, the human serum albumin (HSA) and human plasma were exposed to DVS and its two-phase metabolite DVS-GSH, respectively. After digestion with proteinase K and purification by solid phase extraction (SPE), UPLC-Q-extractive orbitrap high rosolution mass spectrometry (HRMS) was used to identify some albumin adducts. According to the analysis results, three novel biomarkers, DVS-Cys-Pro-Phe, Phe-Pro-Cys-DVS-Cys-Pro-Phe and GSH-DVS-Cys-Pro-Phe, were successfully identified by UPLC-Q-exactive orbitrap/HRMS. The results showed that both DVS and DVS-GSH could react with Cys-34 of albumin due to their highly reactive alkene bonds. These novel damage biomarkers not only provided new clues for SM exposure and diagnosis, but also provided evidence for elucidating the damage mechanism of SM from a new perspective.
  • 加载中
    1. [1]

      PANAHI Y, ABDOLGHAFFARI A H, SAHEBKAR A. J. Cell. Biochem., 2018, 119(1):197-206.

    2. [2]

      TAEBI G, SOROUSH M, MODIRIAN E, KHATERI S, MOUSAVI B Z. Ganjparvar. Iran. J. War Public Health, 2015, 7(2):115-121.

    3. [3]

      JIANG A, MAIBACH H. J. Appl. Toxicol., 2018, 38(1):108-112.

    4. [4]

      CZUB M, NAWALA J, POPIEL S, DZIEDZIC D, BRZEZINSKI T, MASZCZYK P, SANDERSON H, FABISIAK J, BELDOWSKI J, KOTWICKI L. Mar. Environ. Res., 2020, 161:105077.

    5. [5]

      QI M, XU B, WU J, ZHANG Y, ZONG C, CHEN J, GUO L, XIE J. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2016, 1028:42-50.

    6. [6]

      OHEIX E, GRAVEL E, DORIS E. Chemistry, 2021, 27(1):54-68.

    7. [7]

      LV S, ZHANG Y, XU B, XU H, ZHAO Y, CHEN J, GAO Z, WU J, XIE J. Chem. Res. Toxicol., 2017, 30(10):1874-1882.

    8. [8]

      POPIEL S, NAWAŁA J, DZIEDZIC D, GORDON D, DAWIDZIUK B. Int. J. Chem. Kinet., 2018, 50(2):75-89.

    9. [9]

      FORD-MOORE A H. J. Chem. Soc., 1949, 512:2433-2440.

    10. [10]

      WEST J, STAMM C E, BROWN H A, JUSTICE S L, MORANO K A. Chem. Res. Toxicol., 2011, 24(9):1457-1459.

    11. [11]

      WANG P, ZHANG Y, CHEN J, GUO L, XU B, WANG L, XU H, XIE J. Chem. Res. Toxicol., 2015, 28(6):1224-1233.

    12. [12]

      ANSLOW W P, KARNOFSKY D A, VAL JAGER B, SMITH H W. J. Pharmacol. Exp. Ther., 1948, 93(1):1-9.

    13. [13]

      SANTA CRUZ BIOTECHNOLOGY Inc. Divinyl Sulfone (MSDS no. sc-255120). In:Biotechnology S C ed. Safty Data Sheeted. Heidelberg:Germany, 2017:7.

    14. [14]

      DOS SANTOS J C S, RUEDA N, BARBOSA O, MILLÁN-LINARES M D C, PEDROCHE J, YUSTE M D, GONÇALVES L R B, FERNANDEZ-LAFUENTE R. J. Mol. Catal. B:Enzym., 2015, 117:38-44.

    15. [15]

      DOS SANTOS J C S, RUEDA N, TORRES R, BARBOSA O, GONÇALVES L R B, FERNANDEZ-LAFUENTE R. Process Biochem., 2015, 50(6):918-927.

    16. [16]

      MORALES-SANFRUTOS J, LOPEZ-JARAMILLO J, ORTEGA-MUÑOZ M, MEGIA-FERNANDEZ A, PEREZ-BALDERAS F, HERNANDEZ-MATEO F, SANTOYO-GONZALEZ F. Org. Biomol. Chem., 2010, 8(3):667-675.

    17. [17]

      BELLAART A C. Phosphorus Sulfur Relat. Elem., 2007, 6(1-2):33-34.

    18. [18]

      CHENG X, LIU C, YANG Y, LIANG L, CHEN B, YU H, XIA J, LIU S, LI Y. Toxicol. Lett., 2021, 344:46-57.

    19. [19]

      JOHN H, WILLOH S, HORMANN P, SIEGERT M, VONDRAN A, THIERMANN H. Anal. Chem., 2016, 88(17):8787-8794.

    20. [20]

      JOHN H, SIEGERT M, GANDOR F, GAWLIK M, KRANAWETVOGL A, KARAGHIOSOFF K, THIERMANN H. Toxicol. Lett., 2016, 244:103-111.

    21. [21]

      PANTAZIDES B G. CROW B S, GARTON J W, QUINONES-GONZALEZ J A, BLAKE T A, THOMAS J D, JOHNSON R C. Chem. Res. Toxicol., 2015, 28(2):256-261.

    22. [22]

      LIU C, LIANG L, XIANG Y, YU H, ZHOU S, XI H, LIU S, LIU J. Anal. Bioanal. Chem., 2015, 407(23):7037-7046.

    23. [23]

      GANDOR F, GAWLIK M, THIERMANN H, JOHN H. J. Anal. Toxicol., 2015, 39(4):270-279.

    24. [24]

    25. [25]

      NOORT D, HULST A G, JANSEN R. Arch. Toxicol., 2002, 76(2):83-88.

    26. [26]

      OWEN J B, BUTTERFIELD D A. Methods Mol. Biol., 2010, 648:269-277.

    27. [27]

      YU Y, CHAU Y. Biomacromolecules, 2012, 13(3):937-942.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    5. [5]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    6. [6]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    7. [7]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    14. [14]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    15. [15]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    17. [17]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    18. [18]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    19. [19]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(7)
  • Abstract views(945)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return