Citation: CAI Yuan-Jun,  GUAN Sheng,  YAN Guo-Quan,  ZHANG Xiang-Min. Chromatographic Separation and Quantitative Analysis of Glycated Albumin in Human Saliva by Glucose Phenylosazone Spectrophotometric Assay[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1540-1545. doi: 10.19756/j.issn.0253-3820.211200 shu

Chromatographic Separation and Quantitative Analysis of Glycated Albumin in Human Saliva by Glucose Phenylosazone Spectrophotometric Assay

  • Corresponding author: YAN Guo-Quan,  ZHANG Xiang-Min, 
  • Received Date: 16 March 2021
    Revised Date: 30 May 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFA0505003) and the National Natural Science Foundation of China (No.21775027).

  • Diabetes mellitus, characterized by hyperglycemia, is a worldwide disease which may lead to chronic complications. In the process of diabetes detection and monitoring, blood sampling is essential. In this work, a non-invasive, blood-free method was developed for the quantification of glycated albumin in saliva. The saliva sample first underwent size seizing to obtain proteins with molecular weight of larger than 10 kD, then it was separated using the reversed phase liquid chromatography (RPLC), and 36.0-37.0 min fraction was collected. Glycated salivary albumin was quantified by the glucose phenylosazone spectrophotometric assay, which showed good linearity (R2=0.997) in the range 5.0×10-4-5.0×10-2 mmol/L. With this method, the glycated albumin value (GA value) and reproducibility (RSD) for five parallel experiments were 10.9% and 11.3%, respectively. In addition, the GA values of four healthy volunteers proved the method feasible. In conclusion, this method was sensitive and reliable for the quantification of GA values in human saliva, and was inspiring for the clinical detection of diabetes mellitus.
  • 加载中
    1. [1]

      MONNIER V, CERAMI A. Science, 1981, 211(30):491-493.

    2. [2]

      WILLIAMS D L, DOIG A R, KOROSI A. Anal. Chem., 1970, 42(1):118-121.

    3. [3]

      KOENIG R J, PETERSON C M, JONES R L, SAUDEK C, LEHRMAN M, CERAMI A. N. Engl. J. Med., 1976, 295(8):417-420.

    4. [4]

      KIM K J, LEE B W. Diabetes Metab. J., 2012, 36(2):98-107.

    5. [5]

      KOUZUMA T, USAMI T, YAMAKOSHI M, TAKAHASHI M, IMAMURA S. Clin. Chim. Acta, 2002, 324(1):61-71.

    6. [6]

      KOHZUMA T, KOGA M. Mol. Diagn. Ther., 2010, 14(1):49-51.

    7. [7]

      HATADA M, LOEW N, OKUDA-SHIMAZAKI J, KHANWALKER M, TSUGAWA W, MULCHANDANI A, SODE K. Molecules, 2021, 26(3):734.

    8. [8]

      SON S, GUPTAP, HUR W, CHOI H, LEE H, PARK Y, SEONG G. Anal. Chim. Acta, 2020, 1134:41-49.

    9. [9]

      YASUKAWA K, ABE F, SHIDA N, KOIZUMI Y, UCHIDA T, NOGUCHI K, SHIMA K. J. Chromatogr., 1992, 597(1):271-275.

    10. [10]

      SHIMA K, ITO N, ABE F, HIROTA M, YANO M, YAMAMOTO Y, UCHIDA T, NOGUCHI K. Diabetologia, 1988, 31(8):627-631.

    11. [11]

      RENDELL M, KAO G, MECHERIKUNNEL P, PETERSEN B, DUHANEY R, NIERENBERG J, RASBOLD K, KLENK D, SMITH P K. Clin. Chem., 1985, 31(2):229-234.

    12. [12]

    13. [13]

      KOBAYASHI K, YOSHIMOTO K, HIRAUCHI K, UCHIDA K. Biol. Pharm. Bull., 1993, 16(2):195-198.

    14. [14]

      KOGA M. Clin. Chim. Acta, 2014, 433:96-104.

    15. [15]

      MESSANA I, CABRAS T, IAVARONE F, MANCONI B, HUANG L, MARTELLI C, OLIANAS A, SANNA M T, PISANO E, SANNA M, ARBA M, D'ALESSANDRO A, DESIDERIO C, VITALI A, PIROLLI D, TIRONE C, LIO A, VENTO G, ROMAGNOLI C, CORDARO M, MANNI A, GALLENZI P, FIORITA A, SCARANO E, CAL L, PASSALI G C, PICCIOTTI P M, PALUDETTI G, FANOS V, FAA G, CASTAGNOLA M. J. Proteome Res., 2015, 14(4):1666-1677.

    16. [16]

      SCHULZ B L, COOPER-WHITE J, PUNYADEERA C K. Crit. Rev. Biotechnol., 2013, 33(3):246-259.

    17. [17]

      CASEIRO A, FERREIRA R, PADR O A, QUINTANEIRO C, PEREIRA A, MARINHEIRO R, VITORINO R, AMADO F. J. Proteome Res., 2013, 12(4):1700-1709.

    18. [18]

      HENSKENS C., VEERMAN E, MANTEL M S, VANDERVELDEN U. J. Dent. Res., 1994, 73(10):1606-1614.

    19. [19]

      ZHANG L N, LIU C W, ZHANG Q B. Anal. Chem., 2018, 90(2):1081-1086.

    20. [20]

      INOUE Y, INOUE M, SAITO M, YOSHIKAWA H, TAMIYA E. Anal. Chem., 2017, 89(11):5909-5915.

    21. [21]

      MANCONI B, LIORI B, CABRAS T, VINCENZONI F, IAVARONE F, CASTAGNOLA M, MESSANA I, OLIANAS A. J. Proteome Res., 2017, 16(11):4196-4207.

    22. [22]

      PENG Y, CHEN X, SATO T, RANKIN S A, TSUJI R F, GE Y. Anal. Chem., 2012, 84(7):3339-3346.

    23. [23]

      HALGAND F, ZABROUSKOV V, BASSILIAN S, SOUDA P, LOO J A, FAULL K F, WONG D T, WHITELEGGE J P. Anal. Chem., 2012, 84(10):4383-4395.

    24. [24]

      GOEDDEL D, SHU L H, YUAN Y, ANDREA W O, WANG B, SHI Y A. J. Org. Chem., 2006, 71(4):1715-1717.

    25. [25]

      SHU L H, WANG P Z, GAN Y H, SHI Y A. Org. Lett., 2003, 5(3):293-296.

    26. [26]

      ZHU S C, ZHANG X Y, GAO M X, HONG G F, YAN G Q, ZHANG X M. Proteomics, 2012, 12:3451-3463.

    27. [27]

  • 加载中
    1. [1]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    2. [2]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    14. [14]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    15. [15]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    19. [19]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    20. [20]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

Metrics
  • PDF Downloads(10)
  • Abstract views(978)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return