Citation: CHEN Cong-Cong,  LI Jia-Yu,  HUANG Yu-Hao,  ZHANG Lei,  WANG Yun-Ju,  WANG Hong-Yu. Study on Quaternary Alkyl Ammonium Intercalation into Graphite Negative Electrodes by In-Situ X-ray Diffraction and Electrochemical Dilatometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 413-423. doi: 10.19756/j.issn.0253-3820.211138 shu

Study on Quaternary Alkyl Ammonium Intercalation into Graphite Negative Electrodes by In-Situ X-ray Diffraction and Electrochemical Dilatometry

  • Corresponding author: WANG Hong-Yu, hongyuwang@ciac.ac.cn
  • Received Date: 22 February 2021
    Revised Date: 30 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21975251).

  • In activated carbon/graphite capacitors, electrochemical dilatometry and in-situ X-ray diffraction (XRD) were used to investigate the expansion of graphite negative electrodes during the storage of spiro-(1,1') bipyrrolidinium cation (SBP+) from both macro and micro perspectives. The electrochemical dilatometry can accurately monitor the changes in the macroscopic thickness of the graphite electrode, while in-situ XRD can detect the changes in the microscopic crystal structure of the graphite electrode in real time. Through the comparison of the two set of data, it was found that the relative lattice expansion of graphite caused by ion intercalation on the microscopic scale was very close (56%-59%), with a completely different expansion phenomenon from a macroscopic point of view. Large graphite flakes exhibited a greater expansion (12%), while graphite flakes with a smaller size and spherical graphite demonstrated a very small expansion (5%-6%). The scanning electron microscope test showed that this tendency was closely related to the morphology of graphite and the arrangement of graphite particles on the current collector. The high orientation of large graphite flakes led to the relatively larger electrode expansion, while the disorderly arrangement of thin graphite flakes and the isotropic structure of natural spherical graphite would cause the expansion to be dispersed in all directions, and then made the overall expansion smaller.
  • 加载中
    1. [1]

      BEGUIN F, PRESSER V, BALDUCCI A, FRACKOWIAK E. Adv. Mater, 2014, 26(14):2283-2283.

    2. [2]

      PLACKE T, SCHMUELLING G, KLOEPSCH R, MEISTER P, FROMM O, HILBIG P, MEYER H W, WINTER M. Z. Anorg. Allg. Chem., 2014, 640(10):1996-2006.

    3. [3]

      ROTHERMEL S, MEISTER P, SCHMUELLING G, FROMM O, MEYER H W, NOWAK S, WINTER M, PLACKE T. Energy Environ. Sci., 2014, 7(10):3412-3423.

    4. [4]

      MAEDA Y. J. Electrochem. Soc., 1990, 137(10):3047-3052.

    5. [5]

      ZHENG C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2014, 260:19-26.

    6. [6]

      ZHANG L, WANG H. ChemElectroChem, 2019, 6(17):4637-4644.

    7. [7]

      IKEDA H, NARUKAWA S, NAKAJIMA H. Japan Patent, 1982-208079.

    8. [8]

      JACHE B, ADELHELM P. Angew. Chem., Int. Ed., 2014, 126(38):10333-10337.

    9. [9]

      KOMABA S, HASEGAWA T, DAHBI M, KUBOTA K. Electrochem. Commun., 2015, 60:172-175.

    10. [10]

      FONG R, VONSACKEN U, DAHN J R. J. Electrochem. Soc., 1990, 137(7):2009-2013.

    11. [11]

      WANG H Y, YOSHIO M. J. Power Sources, 2012, 200:108-112.

    12. [12]

      LI J Y, ZHENG C, QI L, WANG H Y. Electrochim. Acta, 2017, 248:342-348.

    13. [13]

      LI J Y, HUANG Y H, WANG H Y. J. Electrochem. Soc., 2018, 165(16):A4012-A4017.

    14. [14]

      HUESKER J, FROBOSE L, KWADE A, WINTER M, PLACKE T. Electrochim. Acta, 2017, 257:423-435.

    15. [15]

      RIEGER B, SCHLUETER S, ERHARD S V, JOSSEN A. J. Electrochem. Soc., 2016, 163(8):A1595-A1606.

    16. [16]

      MICHAEL H, IACOVIELLO F, HEENAN T M M, LLEWELLYN A, WEAVING J S, JERVIS R, BRETT D J L, SHEARING P R. J. Electrochem. Soc., 2021, 168:010507.

    17. [17]

      ZHENG C, GAO J C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2013, 231:29-33.

    18. [18]

      CHIBA K, UEDA T, YAMAMOTO H. Electrochemistry, 2007, 75:664-667.

    19. [19]

      UE M, IDA K, MORI S. J. Electrochem. Soc., 1994, 141(11):2989-2996.

    20. [20]

      GAO J C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2015, 278:452-457.

    21. [21]

      RUCH P W, CERICOLA D, HAHN M, KOTZ R, WOKAUN A. J. Electroanal. Chem., 2009, 636(1-2):128-131.

    22. [22]

      SIRISAKSOONTORN W, LERNER M M. Inorg. Chem., 2013, 52:7139-7144.

    23. [23]

      RUCH P W, HAHN M, ROSCIANO F, HOLZAPFEL M, KAISEER H, SCHEIFELE W, SCHMITT B, NOVAK P, KOTZ R, WOKAUN A. Electrochim. Acta, 2007, 53:1074-1082.

    24. [24]

      ZHANG X R, SUKPIROM N, LERNER M M. Mater. Res. Bull., 1999, 34(3):363-372.

    25. [25]

      DRESSELHAUS M S, DRESSELHAUS G. Adv. Phys., 2002, 51:1-186.

    26. [26]

      KIM H K, ROH K C, KIM K B. J. Electrochem. Soc., 2015, 162(12):A2308-A2312.

    27. [27]

      YOSHIO M, WANG H Y, FUKUDA K, UMENO T, ABE T, OGUMI Z. J. Mater. Chem., 2004, 14(11):1754-1758.

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    7. [7]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(6)
  • Abstract views(1040)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return