Citation: JIANG Hao-Yan,  LIU Xin,  XU Yu-Hao,  LI Yang,  TONG Jian-Hua,  BIAN Chao. Rapid Detection System for Soil Nitrate Based on Palladium-Gold Modified Ultramicro Interdigital Electrode Chip[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1342-1349. doi: 10.19756/j.issn.0253-3820.211124 shu

Rapid Detection System for Soil Nitrate Based on Palladium-Gold Modified Ultramicro Interdigital Electrode Chip

  • Corresponding author: BIAN Chao, cbian@mail.ie.ac.cn
  • Received Date: 6 February 2021
    Revised Date: 26 April 2021

    Fund Project: Supported by the National Key Research and Development Project of China (No.2020YFB2009003).

  • To meet the needs of rapid detection of nitrate in soil, a field rapid detection system for nitrate in soil was designed, which integrated the functions of soil leaching solution acquisition and nitrate detection. Nano palladium and gold modified ultramicro interdigital sensing electrode was used for nitrate detection. The sensing electrode was fabricated using micro-electro-mechanical systems (MEMS) technique, and the integrated structure was interdigital array of working electrode and counter electrode. Palladium and gold were modified on the surface of the working electrode by potentiostatic method to form a palladium-gold composite sensitive film. Through the optimization of the preparation parameters of the sensor electrode, the linear response range of the sensor electrode to nitrate was 0.5-100 mg/L (as N), the detection limit was 0.13 mg/L (3σ), the sensitivity was 1.8 μA·L/mg, and the relative deviation was less than 10% after 70 times of continuous repeated measurement. Furthermore, the developed sensor electrode had certain anti-interference ability against common ions in soil including Cl-, CO32-, SO42- and Si42-. The soil leaching solution was obtained by the developed soil nitrate detection system, and the nitrate in the leaching solution was detected. The detection results correlated with the detection results of the standard method.
  • 加载中
    1. [1]

    2. [2]

      BONYANI M, MIRZAEI A, LEONARDI S G, NERI G. Measurement, 2016, 84: 83-90

    3. [3]

    4. [4]

      AFKHAMI A, MADRAKIAN T, GHAEDI H, KHANMOHAMMADI H. Electrochim. Acta, 2012, 66: 255-264.

    5. [5]

      REN W, MURA S, IRUDAYARAJ J M K. Talanta, 2015, 143: 234-239.

    6. [6]

      GAPPER L W, FONG B Y, OTTER D E, INDYK H E, WOOLLARD D C. Int. Dairy J., 2004, 14(10): 881-887

    7. [7]

      JING Y W, PENG D. Microchem. J., 2020, 154: 1-6.

    8. [8]

      ALI M A, JIANG H, MAHAL N K, WEBER R J, KUMAR R, CASTELLANO M J, DONG L. Sens. Actuators, B, 2017, 239: 1289-1299.

    9. [9]

    10. [10]

      NAVEEN B, KUMAR P S. J. Electroanal. Chem., 2020, 856: 113660.

    11. [11]

      GUADAGNINI L, TONELLI D. Sens. Actuators, B, 2013, 188: 806-814.

    12. [12]

      PAIXAO T R L C, CARDOSO J L, BERTOTTI M. Talanta, 2007, 71(1): 186-191.

    13. [13]

      ZHAO S, TONG J, LI Y, SUN J, BIAN C, XIA S. Micromachines, 2019, 10(4): 223.

    14. [14]

      PENNER R M, MARTIN C R. Anal. Chem., 1987, 59(21): 2625-2630.

    15. [15]

      CHEN W, WANG H, TANG H, YANG C, LI Y. Anal. Chem., 2019, 91(22): 14188-14191.

    16. [16]

      BEDELL H W, HERMANN J K, RAVIKUMAR M, LIN S, REIN A, LI X, MOLINICH E, SMITH P D, SELKIRK S M, MILLER R H. Biomaterials, 2018, 163: 163-173.

    17. [17]

      MEHDIPOOR M, GHAVIFEKR H B. Microsyst. Technol., 2020, 26(9): 3821-3828.

    18. [18]

      HUANG Y, SEO K, PARK D, PARK H, SHIM Y. Small, 2021, 17(17): 2007511.

    19. [19]

      GARCIA-DOMINGUEZ P, NEVADO C. J. Am. Chem. Soc., 2016, 138(10): 3266-3269.

    20. [20]

      CHEN H, XING Z, ZHU S, ZHANG L, CHANG Q, HUANG J, CAI W B, KANG N, ZHONG C J, SHAO M. J. Power Sources, 2016, 321: 264-269.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(28)
  • Abstract views(1531)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return