Citation: PENG Hao,  YANG Fang,  DU Hui,  JIANG Bo,  YAO Chen-Yang,  YAO Jun-Lie,  ZHENG Fang,  WU Ai-Guo. Advances of Er3+ Doped Upconversion Nanoparticles for Biological Imaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1106-1120. doi: 10.19756/j.issn.0253-3820.211090 shu

Advances of Er3+ Doped Upconversion Nanoparticles for Biological Imaging

  • Corresponding author: WU Ai-Guo, aiguo@nimte.ac.cn
  • Received Date: 31 January 2021
    Revised Date: 20 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 32025021, 31971292, 51873225) and the Ministry of Science and Technology of China (No. 2018YFC0910601, SQ2019YFA040008-03).

  • Upconversion nanoparticles can emit high-energy photons in visible region under the excitation of near-infrared light. Compared with traditional fluorescent materials, upconversion nanoparticles show better tissue penetration depth and biocompatibility, and also reduce the fluorescence interference of biological cells and tissues. Therefore, upconversion nanoparticles have broad application prospects in the field of highly sensitivie biological imaging. Erbium (Er) has a strong absorption in the near infrared Ⅱ region (1500 nm), and can emit red or green light. With the excellent optical properties, Erbium is usually doped in the upconversion nanoparticles as the emission center. However, due to the problems of surface quenching and energy countercurrent, the upconversion nanoparticles doped with Er3+ have limited luminescence efficiency and low biological imaging performance. In this review, the development of Er3+ doped upconversion nanoparticles in optical properties optimization and biological imaging applications are summarized, and the latest progress and development prospects of Er3+ doped upconversion nanoparticle materials in the domain of temporal pathway imaging are discussed and prospected.
  • 加载中
    1. [1]

      BLOEMBERGEN N. Phys. Rev. Lett., 1959, 2(3): 84-85.

    2. [2]

      LOO J F C, CHIEN Y H, YIN F, KONG S K, HO H P, YONG K T. Coord. Chem. Rev., 2019, 400: 213042.

    3. [3]

      AUZEL F. Chem. Rev., 2004, 104(1): 139-173.

    4. [4]

      DONG H, SUN L D, YAN C H. Chem. Soc. Rev., 2015, 44(6): 1608-1634.

    5. [5]

      JIA F F, LI G L, YANG B, YU B, SHEN Y Q, CONG H L. Nanotechnol. Rev., 2019, 8(1): 1-17.

    6. [6]

      MADER S H, KELE P, SALEH M S, WOLFBEIS S O. Chem. Biol., 2010, 14(5): 582-596.

    7. [7]

      FAN Y, WANG P Y, LU Y Q, WANG R, ZHOU L, ZHENG X L, LI X M, PIPER J A, ZHANG F. Nat. Nanotechnol., 2018, 13: 941-946.

    8. [8]

      LU Y Q, LU J, ZHAO J B, CUSIDO J, RAYMO F M, YUAN J L, YANG S, LEIF R C, HUO Y J, PIPER J A, PAUL R J, GOLDYS E M, JIN D Y. Nat. Commun., 2014, 5: 3741.

    9. [9]

      XIANG G T, LIU X T, XIA Q, LIU X C, XU S, JIANG S, ZHAO X J, LI L, WU D, MA L, WANG X J, ZHANG J H. Talanta, 2021, 224: 121832.

    10. [10]

      CHEN S, WEITEMIER A Z, ZENG X, HE L M, WANG X Y, TAO Y Q, HUANG A J Y, HASHIMOTODANI Y, KANO M, IWASAKI H, PARAJULI L K, OKABE S, TEH D B L, ALL A H, TSUTSUI-KIMURA I, TANAKA K F, LIU X G, MCHUGH T J. Science, 2018, 359(6376): 679-684.

    11. [11]

      THAO C T B, HUY B T, SHARIPOV M, KIM J I, DAO V D, MOON J Y, LEE Y I. Mater. Sci. Eng. C, 2017, 75: 990-997.

    12. [12]

      ZHAO J X, CHEN X, CHEN B, LUO X, SUN T Y, ZHANG W W, WANG C J, LIN J, SU D, QIAO X S, WANG F. Adv. Funct. Mater., 2019, 29(44): 1903295.

    13. [13]

      DONG H, SUN L D, YAN C H. Nanoscale, 2013, 5(13): 5703-5714.

    14. [14]

      ZHOU B, SHI B Y, JIN D Y, LIU X G. Nat. Nanotechnol., 2015, 10(11): 924-936.

    15. [15]

      CHEN G Y, OHULCHANSKYY T Y, KACHYNSKI A, AGREN H, PRASAD P N. ACS Nano, 2011, 5(6): 4981-4986.

    16. [16]

      SHALAV A, RICHARDS B S, TRUPKE T, KRAMER K W, GUDEL H U. Appl. Phys. Lett., 2005, 86: 013505.

    17. [17]

      BINNEMANS K. Chem. Rev., 2009, 109(9): 4283-4374.

    18. [18]

      WANG F, LIU X G. Acc. Chem. Rev., 2014, 47(4): 1378-1385.

    19. [19]

      TU L P, LIU X M, WU F, ZHANG H. Chem. Soc. Rev., 2015, 44: 1331-1345.

    20. [20]

      ZUO J, LIU Q Q, XUE B, LI C X, CHANG Y L, ZHANG Y L, LIU X M, TU L P, ZHANG H, KONG X G. Nanoscale, 2017, 9(23): 7941-7946.

    21. [21]

      DU P, LUO L H, YU S J. Part. Part. Syst. Charact., 2018, 35(3): 1700416.

    22. [22]

      XIANG G T, LIU X T, XIA Q, LIU X C, XU S, JIANG S, ZHOU X J, LI L, WU D, MA L, WANG X J, ZHANG J H. Talanta, 2021, 224: 121832.

    23. [23]

      LUO R, CHEN L, LI Q Y, ZHOU J, MEI L Q, NING Z L, ZHAO Y, LIU M J, LAI X, BI J, YIN W Y, GAO D J. Inorg. Chem., 2020, 59(24): 17906-17915.

    24. [24]

      YADAV R S, DHOBLE S J, RAI S B. New J. Chem., 2018, 42(9): 7272-7282.

    25. [25]

      CHUNG J W, KWAK M, YANG H K. Luminescence, 2021, 36(3): 812-818.

    26. [26]

      YADAV R S, VERMA R K, RAI B S. J. Phys. D: Appl. Phys., 2013, 46(27): 275101.

    27. [27]

      TADGE P, YADAV R S, VISHWAKARMA P K, RAI S B, CHEN T M, SAPRA S, RAY S. J. Alloy Compd., 2020, 821: 153230.

    28. [28]

      KADAM A R, YADAV R S, MISHRA G C, DHOBLE S J. Ceram. Int., 2020, 46(3): 3264-3274.

    29. [29]

      WU Y F, LAI F Q, LIU B, LI Z B, LIANG T X, QIANG Y C, HUANG J H, YE X Y, YOU W X. J. Rare Earths, 2020, 38(2): 130-138.

    30. [30]

      DUBEY A, SONI A K, KUMARI A, DEY R, RAI V K. J. Alloy Compd., 2017, 693: 194-200.

    31. [31]

      CHENG Q, SUI J H, CAI W. Nanoscale, 2012, 4(3): 779-784.

    32. [32]

      WANG X W, ZHANG X, WANG Y B, LI H Y, XIE J, WEI T, HUANG Q W, XIE X J, HUANG L, HUANG W. Dalton Trans., 2017, 46(280): 8968-8974.

    33. [33]

      SUN Y Z, BI H F, WANG T, SUN L L, LI Z X, SONG H N, SUN F L, ZHOU H F, ZHOU G J, HU J F. Mater. Sci. Eng., B, 2020, 261: 114674.

    34. [34]

      ZHOU A H, SONG F, HAN Y D, SONG F F, JU D D, WANG X Q. CrystEngComm, 2018, 20(14): 2029.

    35. [35]

      LIN H, WANG Z G, HONG Y. J. Nanomater., 2020, 2020: 8509380.

    36. [36]

      ZHENG K Z, LOH K Y, WANG Y, CHEN Q S, FAN J Y, JUNG T Y, NAM S H, SUH Y D, LIU X G. Nano Today, 2019, 29: 100797.

    37. [37]

      YI G S, CHOW G M. Chem. Mater., 2007, 19(3): 341-343.

    38. [38]

      XIANG G T, ZHANG J H, HAO Z D, ZHANG X, PAN G H, LUO Y S, LV W, ZHAO H F. Inorg. Chem., 2015, 54(8): 3921-3928.

    39. [39]

      HOMANN C, KRUEWITT L, FRENZEL F, GRAUEL B, WURTH C, RESCH-GENGER U, HAASE M. Angew. Chem., Int. Ed., 2018, 57(28): 8765-8769.

    40. [40]

      WURTH C, FISCHER S, GRAUEL B, ALIVISATOS A P, RESCH-GENGER U. J. Am. Chem. Soc., 2018, 140: 4922-4928.

    41. [41]

      RABIE H, ZHANG Y X, PASQUALE N, LAGOS M J, BATSON P E, LEE K B. Adv. Mater., 2019, 31(14): 1806991.

    42. [42]

      MENG Z, ZHANG S F, WU S L. J. Lumin., 2020, 227: 117566.

    43. [43]

      ZUO J, SUN D P, TU L P, WU Y N, CAO Y H, XUE B, ZHANG Y L, CHANG Y L, LIU X M, KONG X G, BUMA W J, MEIJER E J, ZHANG J. Angew. Chem., Int. Ed., 2018, 57(12): 3054-3058.

    44. [44]

      XIE X J, LI Z J, ZHANG Y W, GUO S H, PENDHARKAR A I, LU M, HUANG L, HUANG W, HAN G. Samll, 2017, 13(6): 1602843.

    45. [45]

      HE J J, ZHENG W, LIGMAJER F L, CHAN C F, BAO Z Y, WONG K L, CHEN X Y, HAO J H, DAI J Y, YU S F, LEI D Y. Light: Sci. Appl., 2017, 6: e16217.

    46. [46]

      LI J F, GUO H L, LI Z Y. Photon. Res., 2013, 1(1): 28-41.

    47. [47]

      FANG C H, JIA H L, CHANG S, RUAN Q F, WANG P, CHEN T, WANG J F. Energy Environ. Sci., 2014, 7(10): 3431-3438.

    48. [48]

      GAO Wei, WANG Bo-Yang, HAN Qin-Yan, HAN Shan-Shan, CHENG Xiao-Tong, ZHANG Chen-Xue, SUN Ze-Yu, LIU Lin, YAN Xue-Wen, WANG Yong-Kai, DONG Jun. Acta Physica sini

    49. [49]

      KANG F W, HE J J, SUN T Y, BAO Z Y, WANG F, LEI D Y. Adv. Funct. Mater., 2017, 27(36): 1701842.

    50. [50]

      CALOS L D, FERREIRA R A S, BERMUDEZ V D Z, RIBEIRO S J. Adv. Mater., 2009, 21(5): 509-534.

    51. [51]

      GU B, ZHANG Q C. Adv. Sci., 2018, 5(3): 1700609.

    52. [52]

      TAN G R, WANG M H, HSU C Y, CHEN N G, ZHANG Y. Adv. Optical Mater., 2016, 4(7): 984-997.

    53. [53]

      ZHU X H, ZHANG J, LIU J L, ZHANG Y. Adv. Sci., 2019, 6(22): 1901358.

    54. [54]

    55. [55]

      WOLFBEIS O S. Chem. Soc. Rev., 2015, 44(14): 4743-4768.

    56. [56]

      ZHANG Z M, SHIKHA S, LIU J L, ZHANG J, MEI Q S, ZHANG Y. Anal. Chem., 2019, 91: 548-568.

    57. [57]

      LI S H, WEI X D, LI S S, ZHU C M, WU C H. Int. J. Nanomed., 2020, 15: 9431-9445.

    58. [58]

      WEN S H, ZHOU J J, ZHENG K Z, BEDNARKIEWICZ A, LIU X G, JIN D Y. Nat. Commun., 2018, 9: 2415.

    59. [59]

      LIANG G F, WANG H J, SHI H, WANG H T, ZHU M X, JING A H, LI J H, LI G D. J. Nanobiotechnol., 2020, 18(1): 154.

    60. [60]

      CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Biomaterials, 2008, 29(7): 937-943.

    61. [61]

      HUANG M, WANG L J, ZHANG X J, ZHOU J, LIU L H, PAN Y F, YU B, YU Z S. Nano, 2017, 12(5): 1750057.

    62. [62]

      REDDY K L, PRABHAKAR N, ARPPE R, ROSENHOLM J M, KRISHNAN V. J. Mater. Sci., 2017, 52(10): 5738-5750.

    63. [63]

      YANG G, CAO Y, YAN B, LV Q, YU J B, ZHAO F S, CHEN Z H, YANG H R, CHEN M X, JIN Z S. Oncotarget, 2018, 9(24): 16758-16774.

    64. [64]

      VU D T, VU-LE T T, NGUYEN V N, LE Q M, WANG C R C, CHAU L K, YANG T S, CHAN M W Y, LEE C I, TING C C, LIN J Y, KAN H C, HSU C C. Int. J. Smart Nano Mater., 2021, 12(1): 49-71.

    65. [65]

      ZOU X M, XU M, YUAN W, WANG Q H, SHI Y B, FENG W, LI F Y. Chem. Conmmun., 2016, 52(91): 13389-13392.

    66. [66]

      CHEN G Y, SHAO W, VALIEV R R, OHULCHANSKYY T Y, HE G S, AGREN H, PRASAD P N. Adv. Optical Mater., 2016, 4(11): 1760-1766.

    67. [67]

      WU X, ZHANG Y W, TAKLE K, BILSEL O, LI Z J, LEE H, ZHANG Z J, LI D S, FAN W, DUAN C Y, CHAN E M, LOIS C, XIANG Y, HAN G. ACS Nano, 2016, 10(1): 1060-1066.

    68. [68]

      CHHETRI B P, KARMAKAR A, GHOSH A. Part. Part. Syst. Charact., 2019, 36(8): 1900153.

    69. [69]

      LI X, ZHANG X N, LI X D, CHANG J. Cancer Biol. Med., 2016, 13(3): 339-348.

    70. [70]

      ZHOU J, SUN Y, DU X X, XIONG L Q, HU H, LI F Y. Biomaterials, 2010, 31(12): 3287-3295.

    71. [71]

      LIU Y, KANG N, LV J, ZHOU Z J, ZHAO Q L, MA L C, CHEN Z, REN L, NIE L M. Adv. Mater., 2016, 28(30): 6411-6419.

    72. [72]

      LUO Y, ZHANG W, LIAO Z F, YANG S N, YANG S T, LI X H, ZUO F, LUO J B. Nanomaterials, 2018, 8(7): 466.

    73. [73]

      KANG N, LIU Y, ZHOU Y M, WANG D, CHEN C, YE S F, NIE L M, REN L. Adv. Healthcare Mater., 2016, 5(11): 1356-1363.

    74. [74]

      HE F, YANG G X, YANG P P, YU Y X, LV R C, LI C X, DAI Y L, GAI S L, LIN J. Adv. Funct. Mater., 2015, 25(25): 3966-3976.

    75. [75]

      LIU F Y, HE X X, LEI Z, LIU L, ZHANG J P, YOU H P, ZHANG H M, WANG Z X. Adv. Healthcare Mater., 2015, 4(4): 559-568.ca, 2020, 69(18): 184213.

    76. [76]

      SUN M Z, XU L G, MA W, WU X L, KUANG H, WANG L B, XU C L. Adv. Mater., 2016, 28(5): 898-904.

    77. [77]

      LU Y Q, ZHAO J B, ZHANG R, LIU Y J, LIU D M, GOLDYS E M, YANG X S, XI P, SUNNA A, LU J, SHI Y, LEIF R C, HUO Y J, SHEN J, PIPER J A, ROBINSON J P, JIN D Y. Nat. Photonics, 2014, 8(1): 33-37.

    78. [78]

  • 加载中
    1. [1]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    2. [2]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    5. [5]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    6. [6]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    7. [7]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    12. [12]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    13. [13]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    14. [14]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Cuiping HEZhuxuan LIYuqing SUNJie LIUShicheng XUZhanchao WU . Ca2+ doping induced crystal phase transition and spectral regulation of Ba3P4O13: Eu2+ phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2299-2306. doi: 10.11862/CJIC.20250074

    17. [17]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(1133)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return