Citation: ZHAN Jia-Yin,  LIU Ran,  ZHANG Jing-Jing. Progress of Stimuli-responsive Nanomaterials in Tumor Analysis[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1133-1141. doi: 10.19756/j.issn.0253-3820.211086 shu

Progress of Stimuli-responsive Nanomaterials in Tumor Analysis

  • Corresponding author: ZHANG Jing-Jing, jing15209791@nju.edu.cn
  • Received Date: 29 January 2021
    Revised Date: 12 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22004063), the Natural Science Foundation of Jiangsu Province (No. 20200303) and the Innovation Fund of Nanjing University (No. 020514913414).

  • Under the trigger of endogenous stimuli (such as pH, overexpressed enzymes, redox, etc.) or exogenous stimuli (such as light, temperature, magnetic fields, etc.), stimuli-responsive nanomaterials can change their structures and properties in tumor tissues, so as to achieve precise drug delivery and imaging. Due to the differences in structure, composition and function, these stimuli-responsive nanomaterials have exhibited diverse applications, such as photothermal therapy, chemotherapy or imaging by triggered drug delivery. To explore the potential applications of stimuli-responsive nanomaterials, this review focuses on exogenous light-responsive and/or endogenous enzyme-responsive nanomaterials and summarizes the research progress in the areas of tumor-related therapy and bioimaging in the past few years.
  • 加载中
    1. [1]

      HANAHAN D, WEINBERG R A. Cell, 2011, 144(5): 646-674.

    2. [2]

      CHINEN A B, GUAN C M, FERRER J R, BARNABY S N, MERKEL T J, MIRKIN C A. Chem. Rev., 2015, 115(19): 10530-10574.

    3. [3]

      SHI J J, KANTOFF P W, WOOSTER R, FAROKHZAD O C. Nat. Rev. Cancer, 2017, 17(1): 20-37.

    4. [4]

      DONG P, RAKESH K P, MANUKUMAR H M, MOHAMMED Y H E, KARTHIK C S, SUMATHI S, MALLU P, QIN H L. Bioorg. Chem., 2019, 85: 325-336.

    5. [5]

      KASHKOOLI F M, SOLTANI M, SOURI M. J. Controlled Release, 2020, 327: 316-349.

    6. [6]

      THAKKAR S, SHARMA D, KALIA K, TEKADE R K. Acta Biomater., 2020, 101: 43-68.

    7. [7]

      PHAM S H, CHOI Y, CHOI J. Pharmaceutics, 2020, 12(7): 630.

    8. [8]

      RACCA L, CAUDA V. Nano-Micro Lett., 2020, 13(1): 11.

    9. [9]

      ZHANG M, GUO X L, WANG M F, LIU K H. J. Controlled Release, 2020, 323: 203-224.

    10. [10]

      ALEJO T, USON L, ARRUEBO M. J. Controlled Release, 2019, 314: 162-176.

    11. [11]

      RAZA A, RASHEED T, NABEEL F, HAYAT U, BILAL M, IQBAL H M N. Molecules, 2019, 24(6): 1117.

    12. [12]

      LUO Z M, JIN K, PANG Q, SHEN S, YAN Z Q, JIANG T, ZHU X Y, YU L, PANG Z Q, JIANG X G. ACS Appl. Mater. Interfaces, 2017, 9(37): 31612-31625.

    13. [13]

      ESPINOSA A, DI CORATO R, KOLOSNJAJ-TABI J, FLAUD P, PELLEGRINO T, WILHELM C. ACS Nano, 2016, 10(2): 2436-2446.

    14. [14]

      SANEJA A, KUMAR R, ARORA D, KUMAR S, PANDA A K, JAGLAN S. Drug Discov. Today, 2018, 23(5): 1115-1125.

    15. [15]

      KATO Y, OZAWA S, MIYAMOTO C, MAEHATA Y, SUZUKI A, MAEDA T, BABA Y. Cancer Cell Int., 2013, 13(1): 1-8.

    16. [16]

      LI Y, GAO G H, LEE D S. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(19): 4175-4182.

    17. [17]

      THOMAS R G, SURENDRAN S P, JEONG Y Y. Front. Mol. Biosci., 2020, 7: 1516-1526.

    18. [18]

      LI M, ZHAO G, SU W K, SHUAI Q. Front. Chem., 2020, 8: 647.

    19. [19]

      MI P. Theranostics, 2020, 10(10): 4557-4588.

    20. [20]

      MOHAPATRA A, UTHAMAN S, PARK I K. Front. Mol. Biosci., 2021, 7: 597634.

    21. [21]

      DYKMAN L, KHLEBTSOV N. Chem. Soc. Rev., 2012, 41(6): 2256-2282.

    22. [22]

      CASTILLO R R, LOZANO D, GONZALEZ B, MANZANO M, IZQUIERDO-BARBA I, VALLET-REGI M. Expert Opin. Drug Deliv., 2019, 16(4): 415-439.

    23. [23]

      DONG H, DU S R, ZHENG X Y, LYU G M, SUN L D, LI L D, ZHANG P Z, ZHANG C, YAN C H. Chem. Rev., 2015, 115(19): 10725-10815.

    24. [24]

      LI L, XING H, ZHANG J, LU Y. Acc. Chem. Res., 2019, 52(9): 2415-2426.

    25. [25]

      MAL N K, FUJIWARA M, TANAKA Y. Nature, 2003, 421(6921): 350-353.

    26. [26]

      WANG X R, HU J M, LIU G H, TIAN J, WANG H J, GONG M, LIU S Y. J. Am. Chem. Soc., 2015, 137(48): 15262-15275.

    27. [27]

      LIU Y, HE M, NIU M M, ZHAO Y Q, ZHU Y Z, LI Z H, FENG N P. Int. J. Nanomed., 2015, 10: 3081-3095.

    28. [28]

      MARTINEZ-CARMONA M, LOZANO D, BAEZA A, COLILLA M, VALLET-REGI M. Nanoscale, 2017, 9(41): 15967-15973.

    29. [29]

      YANG G B, LIU J J, WU Y F, FENG L Z, LIU Z. Coord. Chem. Rev., 2016, 320: 100-117.

    30. [30]

      YUAN A, WU J, TANG X, ZHAO L, XU F, HU Y. J. Pharm. Sci., 2013, 102(1): 6-28.

    31. [31]

      LI X N, SCHUMANN C, ALBARQI H A, LEE C J, ALANI A W G, BRACHA S, MILOVANCEV M, TARATULA O, TARATULA O. Theranostics, 2018, 8(3): 767-784.

    32. [32]

      ZHAO J, CHU H, ZHAO Y, LU Y, LI L. J. Am. Chem. Soc., 2019, 141(17): 7056-7062.

    33. [33]

      CHU H, ZHAO J, MI Y, ZHAO Y, LI L. Angew. Chem., Int. Ed., 2019, 58(42): 14877-14881.

    34. [34]

      LI C Y, ZHENG B, KANG Y F, TANG H W, PANG D W. ACS Sens., 2020, 5(1): 199-207.

    35. [35]

      HUANG L, LI Z J, ZHAO Y, ZHANG Y W, WU S, ZHAO J Z, HAN G. J. Am. Chem. Soc., 2016, 138(44): 14586-14591.

    36. [36]

      VANKAYALA R, KUO C L, NUTHALAPATI K, CHIANG C S, HWANG K C. Adv. Funct. Mater., 2015, 25(37): 5934-5945.

    37. [37]

      GOODMAN A M, NEUMANN O, NORREGAARD K, HENDERSON L, CHOI M R, CLARE S E, HALAS N J. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(47): 12419-12424.

    38. [38]

      DAI Y L, BI H T, DENG X R, LI C X, HE F, MA P A, YANG P P, LIN J. J. Mat. Chem. B, 2017, 5(11): 2086-2095.

    39. [39]

      LIU D, YANG F, XIONG F, GU N. Theranostics, 2016, 6(9): 1306-1323.

    40. [40]

      JO Y, CHOI N, KIM K, KOO H J, CHOI J, KIM H N. Theranostics, 2018, 8(19): 5259-5275.

    41. [41]

      EGEBLAD M, WERB Z. Nat. Rev. Cancer, 2002, 2(3): 161-174.

    42. [42]

      LI X, KIM J, YOON J, CHEN X Y. Adv. Mater., 2017, 29(23): 1606857

    43. [43]

      CALLMANN C E, BARBACK C V, THOMPSON M P, HALL D J, MATTREY R F, GIANNESCHI N C. Adv. Mater., 2015, 27(31): 4611-4615.

    44. [44]

      HU X, YANG P, HE J, LIANG R, NIU D, WANG H, LI Y. J. Mater. Chem. B, 2017, 5(30): 5931-5936.

    45. [45]

      LIU Y, DING X, LI J, LUO Z, HU Y, LIU J, DAI L, ZHOU J, HOU C, CAI K. Nanotechnology, 2015, 26(14): 145102

    46. [46]

      HAN H J, VALDEPEREZ D, JIN Q, YANG B, LI Z H, WU Y L, PELAZ B, PARAK W J, JI J. ACS Nano, 2017, 11(2): 1281-1291.

    47. [47]

      LI H, WANG P, DENG Y X, ZENG M Y, TANG Y, ZHU W H, CHENG Y S. Biomaterials, 2017, 139: 30-38.

    48. [48]

      WHITE B D, DUAN C, TOWNLEY H E. Biomolecules, 2019, 9(5): 202.

    49. [49]

      HUANG Y, SONG C, LI H, ZHANG R, JIANG R, LIU X, ZHANG G, FAN Q, WANG L, HUANG W. ACS Appl. Mater. Interfaces, 2015, 7(38): 21529-21537.

    50. [50]

      SHI H, GAO T, SHI L, CHEN T S, XIANG Y, LI Y Y, LI G X. Sci. Rep., 2018, 8: 16341.

    51. [51]

      YUE X, QIAO Y, GU D, WU Z, ZHAO W, LI X, YIN Y, ZHAO W, KONG D, XI R, MENG M. Sens. Actuators, B, 2020, 312: 127943.

    52. [52]

      ZHENG F F, WANG C, MENG T T, ZHANG Y Q, ZHANG P H, SHEN Q, ZHANG Y C, ZHANG J F, LI J X, MIN Q H, CHEN J N, ZHU J J. ACS Nano, 2019, 13(11): 12577-12590.

    53. [53]

      CHEN C Y, KIM T H, WU W C, HUANG C M, WEI H, MOUNT C W, TIAN Y, JANG S H, PUN S H, JEN A K Y. Biomaterials, 2013, 34(18): 4501-4509.

    54. [54]

      DUTTA S, SAMANTA P, DHARA D. Int. J. Biol. Macromol., 2016, 87: 92-100.

    55. [55]

      AN X, ZHU A, LUO H, KE H, CHEN H, ZHAO Y. ACS Nano, 2016, 10(6): 5947-5958.

    56. [56]

      YANG K, LIU Y, WANG Y, REN Q, GUO H, MATSON J B, CHEN X, NIE Z. Biomaterials, 2019, 223: 119460.

    57. [57]

      GAO S, ZHANG L W, WANG G H, YANG K, CHEN M L, TIAN R, MA Q J, ZHU L. Biomaterials, 2016, 79: 36-45.

  • 加载中
    1. [1]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    3. [3]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    4. [4]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    5. [5]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    8. [8]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    9. [9]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    13. [13]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

Metrics
  • PDF Downloads(0)
  • Abstract views(922)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return