Citation: JIN Ze-Hui,  MIN Qian-Hao. Advances in Nanomaterials Facilitated Mass Spectrometry Imaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1176-1187. doi: 10.19756/j.issn.0253-3820.211073 shu

Advances in Nanomaterials Facilitated Mass Spectrometry Imaging

  • Corresponding author: MIN Qian-Hao, minqianhao@nju.edu.cn
  • Received Date: 26 January 2021
    Revised Date: 3 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21622505, 21974062).

  • Diversified composition and tailorable properties of nanomaterials have provided infinite possibilities for the development of mass spectrometric methods. With the blooming innovation of mass spectrometry technology in recent years, researchers have begun to expand the application of nanomaterials-assisted mass spectrometry from mere detection to imaging. By using nanomaterials as matrices for assisting desorption/ionization or carriers of signal molecules, mass spectrometry imaging can not only provide molecular information of unknown compounds, but also achieve accurate profiling of spatial distribution of biomolecules, drugs, environmental pollutants and other target molecules in tissues and even single cells, thus providing a more intuitive means for physiology and pathology study at tissue or cell level. In this review, the main principles and research progress of nanomaterials facilitated mass spectrometry imaging are summarized, and its future development and potential applications are also prospected.
  • 加载中
    1. [1]

    2. [2]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20): 2299-2301.

    3. [3]

      CAPRIOLI R M, FARMER T B, GILE J. Anal. Chem., 1997, 69(23): 4751-4760.

    4. [4]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T, MATSUO T. Rapid Commun. Mass Spectrom., 1988, 2(8): 151-153.

    5. [5]

      SUNNER J, DRATZ E, CHEN Y C. Anal. Chem., 1995, 67(23): 4335-4342.

    6. [6]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399(6733): 243-246.

    7. [7]

      NORTHEN T R, YANES O, NORTHEN M T, MARRINUCCI D, URITBOONTHAI W, APON J, GOLLEDGE S L, NORDSTROM A, SIUZDAK G. Nature, 2007, 449(7165): 1033-1036.

    8. [8]

      GUINAN T, DELLA VEDOVA C, KOBUS H, VOELCKER N H. Chem. Commun., 2015, 51(28): 6088-6091.

    9. [9]

      CHEN X M, WANG T, LIN L M, WO F J, LIU Y Q, LIANG X, YE H, WU J M. ACS Appl. Mater. Interfaces, 2018, 10(17): 14389-14398.

    10. [10]

      IAKAB S A, RAFOLS P, TAJES M, CORREIG-BLANCHAR X, GARCIA-ALTARES M. ACS Nano, 2020, 14(6): 6785-6794.

    11. [11]

      RAFOLS P, VILALTA D, TORRES S, CALAVIA R, HEIJS B, MCDONNELL L A, BREZMES J, DEL CASTILLO E, YANES O, RAMIREZ N, CORREIG X. PLoS One, 2018, 13(12): e0208908.

    12. [12]

      PALERMO A, FORSBERG E M, WARTH B, AISPORNA A E, BILLINGS E, KUANG E, BENTON H P, BERRY D, SIUZDAK G. ACS Nano, 2018, 12(7): 6938-6948.

    13. [13]

      LI Y F, LUO P Q, CAO X H, LIU H H, WANG J N, WANG J Y, ZHAN L P, NIE Z X. Chem. Commun., 2019, 55(41): 5769-5772.

    14. [14]

      GUAN M, ZHANG Z, LI S L, LIU J A, LIU L, YANG H, ZHANG Y Y, WANG T, ZHAO Z W. Talanta, 2018, 179: 624-631.

    15. [15]

      HAN C, LI S M, YUE Q W, LI N, YANG H, ZHAO Z W. Analyst, 2019, 144(21): 6304-6312.

    16. [16]

      WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8: 3926-3938.

    17. [17]

      WU Q, RUBAKHIN S S, SWEEDLER J V. Anal. Chem., 2020, 92(9): 6613-6621.

    18. [18]

      BASU S S, MCMINN M H, GIMENEZ-CASSINA LOPEZ B, REGAN M S, RANDALL E C, CLARK A R, COX C R, AGAR N Y R. Anal. Chem., 2019, 91(10): 6800-6807.

    19. [19]

      WANG Z J, CAI Y, WANG Y, ZHOU X W, ZHANG Y, LU H J. Sci. Rep., 2017, 7: 44466.

    20. [20]

      CHEN S M, XIONG C Q, LIU H H, WAN Q Q, HOU J, HE Q, BADU-TAWIAH A, NIE Z X. Nat. Nanotechnol., 2015, 10(2): 176-182.

    21. [21]

      SHI R, DAI X, LI W F, LU F, LIU Y, QU H H, LI H, CHEN Q Y, TIAN H, WU E H, WANG Y, ZHOU R H, LEE S T, LIFSHITZ Y, KANG Z H, LIU J. ACS Nano, 2017, 11(9): 9500-9513.

    22. [22]

      LIN Z A, WU J, DONG Y Q, XIE P S, ZHANG Y H, CAI Z W. Anal. Chem., 2018, 90(18): 10872-10880.

    23. [23]

      HEEREN R M A. Int. J. Mass spectrom., 2015, 377: 672-680.

    24. [24]

      LIEBL H. J. Appl. Phys., 1967, 38(13): 5277-5283.

    25. [25]

      CHUGHTAI K, HEEREN R M A. Chem. Rev., 2010, 110(5): 3237-3277.

    26. [26]

      MOON D W, PARK Y H, LEE S Y, LIM H, KWAK S, KIM M S, KIM H, KIM E, JUNG Y, HOE H S, KIM S, LIM D K, KIM C H, IN S I. ACS Appl. Mater. Interfaces, 2020, 12(15): 18056-18064.

    27. [27]

      JIA F, WANG J, ZHAO Y, ZHANG Y, LUO Q, QI L, HOU Y, DU J, WANG F. Anal. Chem., 2020, 92(23): 15517-15525.

    28. [28]

      VEITH L, VENNEMANN A, BREITENSTEIN D, ENGELHARD C, WIEMANN M, HAGENHOFF B. Analyst, 2017, 142(14): 2631-2639.

    29. [29]

      HUA X, LI H W, LONG Y T. Anal. Chem., 2018, 90(2): 1072-1076.

    30. [30]

      SEKINE R, MOORE K L, MATZKE M, VALLOTTON P, JIANG H, HUGHES G M, KIRBY J K, DONNER E, GROVENOR C R M, SVENDSEN C, LOMBI E. ACS Nano, 2017, 11(11): 10894-10902.

    31. [31]

      SINGH A V, JUNGNICKEL H, LEIBROCK L, TENTSCHERT J, REICHARDT P, KATZ A, LAUX P, LUCH A. Sci. Rep., 2020, 10: 261.

    32. [32]

      YAN X, ZHAO X A, ZHOU Z P, MCKAY A, BRUNET A, ZARE R N. Anal. Chem., 2020, 92(19): 13281-13289.

    33. [33]

      YIN R, BURNUM-JOHNSON K E, SUN X, DEY S K, LASKIN J. Nat. Protoc., 2019, 14(12): 3445-3470.

    34. [34]

      CHENG Y H, ZHANG Y, CHAU S L, LAI S K, TANG H W, NG K M. ACS Appl. Mater. Interfaces, 2016, 8(43): 29668-29675.

    35. [35]

      HINNERS P, THOMAS M, LEE Y J. Anal. Chem., 2020, 92(4): 3125-3132.

    36. [36]

      SHARIATGORJI M, NILSSON A, FRIDJONSDOTTIR E, VALLIANATOU T, KALLBACK P, KATAN L, SAVMARKER J, MANTAS I, ZHANG X, BEZARD E, SVENNINGSSON P, ODELL L R, ANDREN P E. Nat. Methods, 2019, 16(10): 1021-1028.

    37. [37]

      ZHAO C, XIE P S, YONG T, HUANG W, LIU J J, WU D S, JI F F, LI M, ZHANG D D, LI R J, DONG C, MA J, DONG Z, LIU S J, CAI Z W. Sci. Bull., 2020, 66(6): 578-591.

    38. [38]

      BANERJEE S, ZARE R N, TIBSHIRANI R J, KUNDER C A, NOLLEY R, FAN R, BROOKS J D, SONN G A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(13): 3334-3339.

    39. [39]

      MARGULIS K, CHIOU A S, AASI S Z, TIBSHIRANI R J, TANG J Y, ZARE R N. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(25): 6347-6352.

    40. [40]

      GIORDANO S, MOROSI L, VEGLIANESE P, LICANDRO S A, FRAPOLLI R, ZUCCHETTI M, CAPPELLETTI G, FALCIOLA L, PIFFERI V, VISENTIN S, D’INCALCI M, DAVOLI E. Sci. Rep., 2016, 6: 37027.

    41. [41]

      SIKORA K N, HARDIE J M, CASTELLANOS-GARCIA L J, LIU Y, REINHARDT B M, FARKAS M E, ROTELLO V M, VACHET R W. Anal. Chem., 2020, 92(2): 2011-2018.

    42. [42]

      XUE J, LIU H, CHEN S, XIONG C, ZHAN L. Sci. Adv., 2018, 4(10): eaat9039.

    43. [43]

      SWALES J G, HAMM G, CLENCH M R, GOODWIN R J A. Int. J. Mass spectrom., 2019, 437: 99-112.

    44. [44]

      MENG Y, CHENG X, WANG T, HANG W, LI X, NIE W, LIU R, LIN Z, HANG L, YIN Z, ZHANG B, YAN X. Angew. Chem., Int. Ed., 2020, 59(41): 17864-17871.

    45. [45]

      PROETTO M T, ANDERTON C R, HU D, SZYMANSKI C J, ZHU Z, PATTERSON J P, KAMMEYER J K, NILEWSKI L G, RUSH A M, BELL N C, EVANS J E, ORR G, HOWELL S B, GIANNESCHI N C. ACS Nano, 2016, 10(4): 4046-4054.

    46. [46]

      PROETTO M T, CALLMANN C E, CLIFF J, SZYMANSKI C J, HU D, HOWELL S B, EVANS J E, ORR G, GIANNESCHI N C. ACS Cent. Sci., 2018, 4(11): 1477-1484.

    47. [47]

      YAN B, KIM S T, KIM C S, SAHA K, MOYANO D F, XING Y Q, JIANG Y, ROBERTS A L, ALFONSO F S, ROTELLO V M, VACHET R W. J. Am. Chem. Soc., 2013, 135(34): 12564-12567.

    48. [48]

      ELCI S G, YESILBAG TONGA G, YAN B, KIM S T, KIM C S, JIANG Y, SAHA K, MOYANO D F, MARSICO A L M, ROTELLO V M, VACHET R W. ACS Nano, 2017, 11(7): 7424-7430.

    49. [49]

      MA W, XU S T, NIE H G, HU B Y, BAI Y, LIU H W. Chem. Sci., 2019, 10(8): 2320-2325.

    50. [50]

      NGUYEN S N, KYLE J E, DAUTEL S E, SONTAG R, LUDERS T, CORLEY R, ANSONG C, CARSON J, LASKIN J. Anal. Chem., 2019, 91(18): 11629-11635.

    51. [51]

      HAMILTON B R, MARSHALL D L, CASEWELL N R, HARRISON R A, BLANKSBY S J, UNDHEIM E A B. Angew. Chem., Int. Ed., 2020, 59(10): 3855-3858.

    52. [52]

      LI H, BALAN P, VERTES A. Angew. Chem., Int. Ed., 2016, 55(48): 15035-15039.

    53. [53]

      CHEN P Y, HSIEH C Y, SHIH C J, LIN Y J, TSAO C W, YANG Y L. J. Nat. Prod., 2018, 81(7): 1527-1533.

    54. [54]

      ZHONG H, ZHANG J, TANG X, ZHANG W, JIANG R, LI R, CHEN D, WANG P, YUAN Z. Nat. Commun., 2017, 8: 14524.

    55. [55]

      AHLF D R, MASYUKO R N, HUMMON A B, BOHN P W. Analyst, 2014, 139(18): 4578-4585.

    56. [56]

      FLETCHER J S, SAMFORS S, VALLIN J, SVANSTROM A, GRANTHAM J. Anal. Bioanal. Chem., 2021, 413(2): 445-453.

    57. [57]

      HARMSEN S, COSKUN A F, GANESH S, NOLAN G P, GAMBHIR S S. Adv. Mater. Technol., 2020, 5(7): 2000098.

    58. [58]

      KIRCHBERGER-TOLSTIK T, RYABCHYKOV O, BOCKLITZ T, DIRSCH O, SETTMACHER U, POPP J, STALLMACH A. Analyst, 2021, 146(4): 1239-1252.

    59. [59]

      LANNI E J, MASYUKO R N, DRISCOLL C M, DUNHAM S J, SHROUT J D, BOHN P W, SWEEDLER J V. Anal. Chem., 2014, 86(21): 10885-10891.

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    4. [4]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    5. [5]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    10. [10]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    17. [17]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    18. [18]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    19. [19]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(0)
  • Abstract views(891)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return